AutowareV2X/src/cpm_application.cpp

391 lines
16 KiB
C++
Raw Normal View History

2021-10-27 21:56:21 +00:00
#include "autoware_v2x/cpm_application.hpp"
#include "autoware_v2x/positioning.hpp"
#include "autoware_v2x/security.hpp"
#include "autoware_v2x/link_layer.hpp"
2021-11-10 15:21:32 +00:00
#include "autoware_v2x/v2x_node.hpp"
2021-10-27 21:56:21 +00:00
2021-11-14 04:26:18 +00:00
#include "tf2/LinearMath/Quaternion.h"
#include "tf2/LinearMath/Matrix3x3.h"
2021-10-27 21:56:21 +00:00
#include "rclcpp/rclcpp.hpp"
#include <vanetza/btp/ports.hpp>
#include <vanetza/asn1/cpm.hpp>
#include <vanetza/asn1/packet_visitor.hpp>
#include <vanetza/facilities/cpm_functions.hpp>
#include <chrono>
#include <functional>
#include <iostream>
#include <sstream>
#include <exception>
2021-11-10 15:21:32 +00:00
#include <GeographicLib/UTMUPS.hpp>
#include <GeographicLib/MGRS.hpp>
#include <string>
2021-10-27 21:56:21 +00:00
#include <boost/units/cmath.hpp>
#include <boost/units/systems/si/prefixes.hpp>
2021-11-10 08:14:01 +00:00
#define _USE_MATH_DEFINES
#include <math.h>
2021-10-27 21:56:21 +00:00
using namespace vanetza;
using namespace vanetza::facilities;
using namespace std::chrono;
2022-02-16 07:53:45 +00:00
namespace v2x {
CpmApplication::CpmApplication(V2XNode *node, Runtime &rt, bool is_sender) :
2021-11-10 15:21:32 +00:00
node_(node),
runtime_(rt),
2022-02-16 07:53:45 +00:00
ego_(),
2021-11-10 15:21:32 +00:00
generationDeltaTime_(0),
updating_objects_stack_(false),
2022-01-21 13:07:33 +00:00
sending_(false),
is_sender_(is_sender),
2022-01-21 13:07:33 +00:00
reflect_packet_(false)
2021-11-10 15:21:32 +00:00
{
RCLCPP_INFO(node_->get_logger(), "CpmApplication started. is_sender: %d", is_sender_);
2021-12-05 05:16:56 +00:00
set_interval(milliseconds(100));
2021-11-10 15:21:32 +00:00
}
2021-10-27 21:56:21 +00:00
2022-01-21 13:07:33 +00:00
void CpmApplication::set_interval(Clock::duration interval) {
2021-11-10 15:21:32 +00:00
cpm_interval_ = interval;
runtime_.cancel(this);
schedule_timer();
2021-11-10 08:14:01 +00:00
}
2021-11-10 15:21:32 +00:00
2022-01-21 13:07:33 +00:00
void CpmApplication::schedule_timer() {
2021-11-10 15:21:32 +00:00
runtime_.schedule(cpm_interval_, std::bind(&CpmApplication::on_timer, this, std::placeholders::_1), this);
2021-10-27 21:56:21 +00:00
}
2022-01-21 13:07:33 +00:00
void CpmApplication::on_timer(Clock::time_point) {
2021-11-10 15:21:32 +00:00
schedule_timer();
send();
}
2021-11-10 08:14:01 +00:00
2022-01-21 13:07:33 +00:00
CpmApplication::PortType CpmApplication::port() {
2021-11-10 15:21:32 +00:00
return btp::ports::CPM;
}
2021-10-27 21:56:21 +00:00
2022-03-28 02:17:51 +00:00
std::string CpmApplication::uuidToHexString(const unique_identifier_msgs::msg::UUID &id) {
std::stringstream ss;
for (auto i = 0; i < 16; ++i) {
ss << std::hex << std::setfill('0') << std::setw(2) << +id.uuid[i];
}
return ss.str();
}
2022-01-15 07:14:17 +00:00
void CpmApplication::indicate(const DataIndication &indication, UpPacketPtr packet) {
2022-01-21 13:07:33 +00:00
2021-11-10 15:21:32 +00:00
asn1::PacketVisitor<asn1::Cpm> visitor;
std::shared_ptr<const asn1::Cpm> cpm = boost::apply_visitor(visitor, *packet);
2022-01-21 13:07:33 +00:00
2021-11-17 08:58:41 +00:00
if (cpm) {
2022-03-28 02:17:51 +00:00
RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] Received CPM");
2022-01-15 07:14:17 +00:00
rclcpp::Time current_time = node_->now();
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] T_receive_r1 %ld", current_time.nanoseconds());
2022-01-15 07:14:17 +00:00
2021-11-10 15:21:32 +00:00
asn1::Cpm message = *cpm;
ItsPduHeader_t &header = message->header;
// Calculate GDT and get GDT from CPM and calculate the "Age of CPM"
GenerationDeltaTime_t gdt_cpm = message->cpm.generationDeltaTime;
const auto time_now = duration_cast<milliseconds> (runtime_.now().time_since_epoch());
uint16_t gdt = time_now.count();
int gdt_diff = (65536 + (gdt - gdt_cpm) % 65536) % 65536;
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] GDT_CPM: %ld", gdt_cpm);
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] GDT: %u", gdt);
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] T_R1R2: %d", gdt_diff);
2022-01-20 10:39:51 +00:00
2021-11-10 15:21:32 +00:00
CpmManagementContainer_t &management = message->cpm.cpmParameters.managementContainer;
double lat = management.referencePosition.latitude / 1.0e7;
double lon = management.referencePosition.longitude / 1.0e7;
int zone;
2022-02-25 09:38:23 +00:00
int grid_num_x = 4;
int grid_num_y = 39;
int grid_size = 100000;
2021-11-10 15:21:32 +00:00
bool northp;
double x, y;
GeographicLib::UTMUPS::Forward(lat, lon, zone, northp, x, y);
2022-02-25 09:38:23 +00:00
double x_mgrs = x - grid_num_x * grid_size;
double y_mgrs = y - grid_num_y * grid_size;
2021-11-10 15:21:32 +00:00
OriginatingVehicleContainer_t &ovc = message->cpm.cpmParameters.stationDataContainer->choice.originatingVehicleContainer;
// Calculate ego-vehicle orientation (radians) from heading (degree).
// orientation: True-East, counter-clockwise angle. (0.1 degree accuracy)
2021-11-10 15:21:32 +00:00
int heading = ovc.heading.headingValue;
double orientation = (90.0 - (double) heading / 10.0) * M_PI / 180.0;
if (orientation < 0.0) orientation += (2.0 * M_PI);
// double orientation = heading / 10.0;
2022-03-28 02:17:51 +00:00
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] heading: %d", heading);
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] orientation: %f", orientation);
2021-11-10 15:21:32 +00:00
// Get PerceivedObjects
receivedObjectsStack.clear();
2021-11-14 04:26:18 +00:00
2021-11-17 08:58:41 +00:00
PerceivedObjectContainer_t *&poc = message->cpm.cpmParameters.perceivedObjectContainer;
2021-11-14 04:26:18 +00:00
2021-11-17 08:58:41 +00:00
if (poc != NULL) {
for (int i = 0; i < poc->list.count; ++i) {
// RCLCPP_INFO(node_->get_logger(), "[INDICATE] Object: #%d", poc->list.array[i]->objectID);
2021-11-17 08:58:41 +00:00
CpmApplication::Object object;
double x1 = poc->list.array[i]->xDistance.value;
double y1 = poc->list.array[i]->yDistance.value;
x1 = x1 / 100.0;
y1 = y1 / 100.0;
object.position_x = x_mgrs + (cos(orientation) * x1 - sin(orientation) * y1);
object.position_y = y_mgrs + (sin(orientation) * x1 + cos(orientation) * y1);
2021-11-17 08:58:41 +00:00
object.shape_x = poc->list.array[i]->planarObjectDimension2->value;
object.shape_y = poc->list.array[i]->planarObjectDimension1->value;
object.shape_z = poc->list.array[i]->verticalObjectDimension->value;
object.yawAngle = poc->list.array[i]->yawAngle->value;
double yaw_radian = (M_PI * object.yawAngle / 10.0) / 180.0;
2021-11-17 08:58:41 +00:00
tf2::Quaternion quat;
quat.setRPY(0, 0, yaw_radian);
object.orientation_x = quat.x();
object.orientation_y = quat.y();
object.orientation_z = quat.z();
object.orientation_w = quat.w();
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] object.quat: %f, %f, %f, %f", object.orientation_x, object.orientation_y, object.orientation_z, object.orientation_w);
2021-11-17 08:58:41 +00:00
receivedObjectsStack.push_back(object);
}
node_->publishObjects(&receivedObjectsStack);
} else {
2022-03-28 02:17:51 +00:00
// RCLCPP_INFO(node_->get_logger(), "[INDICATE] Empty POC");
2021-11-10 15:21:32 +00:00
}
2022-01-21 13:07:33 +00:00
if (reflect_packet_) {
Application::DownPacketPtr packet{new DownPacket()};
std::unique_ptr<geonet::DownPacket> payload{new geonet::DownPacket()};
payload->layer(OsiLayer::Application) = std::move(message);
Application::DataRequest request;
request.its_aid = aid::CP;
request.transport_type = geonet::TransportType::SHB;
request.communication_profile = geonet::CommunicationProfile::ITS_G5;
Application::DataConfirm confirm = Application::request(request, std::move(payload), node_);
if (!confirm.accepted()) {
throw std::runtime_error("[CpmApplication::indicate] Packet reflection failed");
}
}
2021-11-17 08:58:41 +00:00
} else {
RCLCPP_INFO(node_->get_logger(), "[INDICATE] Received broken content");
2021-11-10 15:21:32 +00:00
}
}
2021-10-27 21:56:21 +00:00
2022-01-21 13:07:33 +00:00
void CpmApplication::updateMGRS(double *x, double *y) {
2022-02-16 07:53:45 +00:00
ego_.mgrs_x = *x;
ego_.mgrs_y = *y;
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::updateMGRS] ego-vehicle.position: %.10f, %.10f", ego_.mgrs_x, ego_.mgrs_y);
2021-11-10 15:21:32 +00:00
}
2021-10-27 21:56:21 +00:00
2022-01-21 13:07:33 +00:00
void CpmApplication::updateRP(double *lat, double *lon, double *altitude) {
2022-02-16 07:53:45 +00:00
ego_.latitude = *lat;
ego_.longitude = *lon;
ego_.altitude = *altitude;
2021-11-10 15:21:32 +00:00
}
2021-10-27 21:56:21 +00:00
2022-01-21 13:07:33 +00:00
void CpmApplication::updateGenerationDeltaTime(int *gdt, long long *gdt_timestamp) {
2021-11-10 15:21:32 +00:00
generationDeltaTime_ = *gdt;
2022-01-15 07:14:17 +00:00
gdt_timestamp_ = *gdt_timestamp; // ETSI-epoch milliseconds timestamp
2021-11-10 08:14:01 +00:00
}
2022-01-21 13:07:33 +00:00
void CpmApplication::updateHeading(double *yaw) {
2022-02-16 07:53:45 +00:00
ego_.heading = *yaw;
2021-11-10 15:21:32 +00:00
}
2021-10-27 21:56:21 +00:00
2022-03-28 02:17:51 +00:00
void CpmApplication::updateObjectsStack(const autoware_auto_perception_msgs::msg::PredictedObjects::ConstSharedPtr msg) {
2021-11-10 15:21:32 +00:00
updating_objects_stack_ = true;
2021-10-27 21:56:21 +00:00
2021-11-17 08:45:25 +00:00
if (sending_) {
2021-11-10 15:21:32 +00:00
RCLCPP_INFO(node_->get_logger(), "updateObjectsStack Skipped...");
return;
2021-11-17 08:45:25 +00:00
} else {
2021-11-10 15:21:32 +00:00
objectsStack.clear();
2021-11-17 08:45:25 +00:00
}
2021-11-10 15:21:32 +00:00
2021-11-17 08:45:25 +00:00
if (msg->objects.size() > 0) {
2021-11-10 15:21:32 +00:00
int i = 0;
2022-03-28 02:17:51 +00:00
for (autoware_auto_perception_msgs::msg::PredictedObject obj : msg->objects) {
// RCLCPP_INFO(node_->get_logger(), "%d", obj.classification.front().label);
2021-11-10 15:21:32 +00:00
CpmApplication::Object object;
object.objectID = i;
object.timestamp = msg->header.stamp;
2022-03-28 02:17:51 +00:00
object.position_x = obj.kinematics.initial_pose_with_covariance.pose.position.x; // MGRS
object.position_y = obj.kinematics.initial_pose_with_covariance.pose.position.y;
object.position_z = obj.kinematics.initial_pose_with_covariance.pose.position.z;
object.orientation_x = obj.kinematics.initial_pose_with_covariance.pose.orientation.x;
object.orientation_y = obj.kinematics.initial_pose_with_covariance.pose.orientation.y;
object.orientation_z = obj.kinematics.initial_pose_with_covariance.pose.orientation.z;
object.orientation_w = obj.kinematics.initial_pose_with_covariance.pose.orientation.w;
2021-11-17 08:45:25 +00:00
object.shape_x = std::lround(obj.shape.dimensions.x * 10.0);
object.shape_y = std::lround(obj.shape.dimensions.y * 10.0);
object.shape_z = std::lround(obj.shape.dimensions.z * 10.0);
// xDistance, yDistance: Int (-132768..132767), 0.01 meter accuracy
object.xDistance = std::lround((
(object.position_x - ego_.mgrs_x) * cos(-ego_.heading) - (object.position_y - ego_.mgrs_y) * sin(-ego_.heading)
) * 100.0);
object.yDistance = std::lround((
(object.position_x - ego_.mgrs_x) * sin(-ego_.heading) + (object.position_y - ego_.mgrs_y) * cos(-ego_.heading)
) * 100.0);
2021-11-17 12:01:38 +00:00
if (object.xDistance < -132768 || object.xDistance > 132767) {
continue;
}
if (object.yDistance < -132768 || object.yDistance > 132767) {
continue;
}
2021-11-17 08:45:25 +00:00
object.xSpeed = 0;
object.ySpeed = 0;
2021-11-14 04:26:18 +00:00
// Calculate orientation of detected object
2021-11-14 04:26:18 +00:00
tf2::Quaternion quat(object.orientation_x, object.orientation_y, object.orientation_z, object.orientation_w);
tf2::Matrix3x3 matrix(quat);
double roll, pitch, yaw;
matrix.getRPY(roll, pitch, yaw);
2021-11-17 08:45:25 +00:00
if (yaw < 0) {
object.yawAngle = std::lround(((yaw + 2*M_PI) * 180.0 / M_PI) * 10.0); // 0 - 3600
} else {
object.yawAngle = std::lround((yaw * 180.0 / M_PI) * 10.0); // 0 - 3600
}
2022-01-15 07:14:17 +00:00
long long msg_timestamp_sec = msg->header.stamp.sec;
long long msg_timestamp_nsec = msg->header.stamp.nanosec;
msg_timestamp_sec -= 1072915200; // convert to etsi-epoch
long long msg_timestamp_msec = msg_timestamp_sec * 1000 + msg_timestamp_nsec / 1000000;
// long long timestamp = msg->header.stamp.sec * 1e9 + msg->header.stamp.nanosec;
object.timeOfMeasurement = gdt_timestamp_ - msg_timestamp_msec;
2021-11-23 04:02:54 +00:00
// RCLCPP_INFO(node_->get_logger(), "[updateObjectsStack] %ld %ld %d", gdt_timestamp_, timestamp, object.timeOfMeasurement);
if (object.timeOfMeasurement < -1500 || object.timeOfMeasurement > 1500) {
2022-01-15 07:14:17 +00:00
RCLCPP_INFO(node_->get_logger(), "[updateObjectsStack] timeOfMeasurement out of bounds: %d", object.timeOfMeasurement);
2021-11-23 04:02:54 +00:00
continue;
}
2021-11-10 15:21:32 +00:00
objectsStack.push_back(object);
++i;
}
2021-11-10 08:14:01 +00:00
}
2022-03-28 02:17:51 +00:00
// RCLCPP_INFO(node_->get_logger(), "ObjectsStack: %d objects", objectsStack.size());
2022-01-23 06:38:33 +00:00
rclcpp::Time current_time = node_->now();
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::updateObjectsStack] [measure] T_objstack_updated %ld", current_time.nanoseconds());
2021-11-10 15:21:32 +00:00
updating_objects_stack_ = false;
}
2021-11-10 08:14:01 +00:00
2022-01-15 07:14:17 +00:00
void CpmApplication::send() {
2022-01-21 13:07:33 +00:00
if (is_sender_) {
sending_ = true;
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] Sending CPM...");
2022-01-21 13:07:33 +00:00
vanetza::asn1::Cpm message;
// ITS PDU Header
ItsPduHeader_t &header = message->header;
header.protocolVersion = 1;
header.messageID = 14;
header.stationID = 1;
CollectivePerceptionMessage_t &cpm = message->cpm;
// Set GenerationDeltaTime
cpm.generationDeltaTime = generationDeltaTime_ * GenerationDeltaTime_oneMilliSec;
CpmManagementContainer_t &management = cpm.cpmParameters.managementContainer;
management.stationType = StationType_passengerCar;
management.referencePosition.latitude = ego_.latitude * 1e7;
management.referencePosition.longitude = ego_.longitude * 1e7;
2022-01-21 13:07:33 +00:00
cpm.cpmParameters.numberOfPerceivedObjects = objectsStack.size();
StationDataContainer_t *&sdc = cpm.cpmParameters.stationDataContainer;
sdc = vanetza::asn1::allocate<StationDataContainer_t>();
sdc->present = StationDataContainer_PR_originatingVehicleContainer;
OriginatingVehicleContainer_t &ovc = sdc->choice.originatingVehicleContainer;
ovc.speed.speedValue = 0;
ovc.speed.speedConfidence = 1;
// Calculate headingValue of ego-vehicle.
// Convert ego-vehicle yaw to True-North clockwise angle (heading). 0.1 degree accuracy.
2022-02-16 07:53:45 +00:00
int heading = std::lround(((-ego_.heading * 180.0 / M_PI) + 90.0) * 10.0);
2022-01-21 13:07:33 +00:00
if (heading < 0) heading += 3600;
ovc.heading.headingValue = heading;
ovc.heading.headingConfidence = 1;
if (objectsStack.size() > 0) {
PerceivedObjectContainer_t *&poc = cpm.cpmParameters.perceivedObjectContainer;
poc = vanetza::asn1::allocate<PerceivedObjectContainer_t>();
for (CpmApplication::Object object : objectsStack) {
PerceivedObject *pObj = vanetza::asn1::allocate<PerceivedObject>();
pObj->objectID = object.objectID;
pObj->timeOfMeasurement = object.timeOfMeasurement;
pObj->xDistance.value = object.xDistance;
pObj->xDistance.confidence = 1;
pObj->yDistance.value = object.yDistance;
pObj->yDistance.confidence = 1;
pObj->xSpeed.value = object.xSpeed;
pObj->xSpeed.confidence = 1;
pObj->ySpeed.value = object.ySpeed;
pObj->ySpeed.confidence = 1;
pObj->planarObjectDimension1 = vanetza::asn1::allocate<ObjectDimension_t>();
pObj->planarObjectDimension2 = vanetza::asn1::allocate<ObjectDimension_t>();
pObj->verticalObjectDimension = vanetza::asn1::allocate<ObjectDimension_t>();
(*(pObj->planarObjectDimension1)).value = object.shape_y;
(*(pObj->planarObjectDimension1)).confidence = 1;
(*(pObj->planarObjectDimension2)).value = object.shape_x;
(*(pObj->planarObjectDimension2)).confidence = 1;
(*(pObj->verticalObjectDimension)).value = object.shape_z;
(*(pObj->verticalObjectDimension)).confidence = 1;
pObj->yawAngle = vanetza::asn1::allocate<CartesianAngle>();
(*(pObj->yawAngle)).value = object.yawAngle;
(*(pObj->yawAngle)).confidence = 1;
// RCLCPP_INFO(node_->get_logger(), "[SEND] Added: #%d (%d, %d) (%d, %d) (%d, %d, %d) %d", object.objectID, object.xDistance, object.yDistance, object.xSpeed, object.ySpeed, object.shape_y, object.shape_x, object.shape_z, object.yawAngle);
2022-01-21 13:07:33 +00:00
ASN_SEQUENCE_ADD(poc, pObj);
}
} else {
cpm.cpmParameters.perceivedObjectContainer = NULL;
RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] Empty POC");
2021-11-10 15:21:32 +00:00
}
2022-01-21 13:07:33 +00:00
Application::DownPacketPtr packet{new DownPacket()};
std::unique_ptr<geonet::DownPacket> payload{new geonet::DownPacket()};
2021-11-17 08:45:25 +00:00
2022-01-21 13:07:33 +00:00
payload->layer(OsiLayer::Application) = std::move(message);
2021-11-17 08:45:25 +00:00
2022-01-21 13:07:33 +00:00
Application::DataRequest request;
request.its_aid = aid::CP;
request.transport_type = geonet::TransportType::SHB;
request.communication_profile = geonet::CommunicationProfile::ITS_G5;
2021-11-17 08:45:25 +00:00
2022-01-21 13:07:33 +00:00
Application::DataConfirm confirm = Application::request(request, std::move(payload), node_);
2021-11-17 08:45:25 +00:00
2022-01-21 13:07:33 +00:00
if (!confirm.accepted()) {
throw std::runtime_error("[CpmApplication::send] CPM application data request failed");
}
sending_ = false;
rclcpp::Time current_time = node_->now();
// RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] [measure] T_depart_r1 %ld", current_time.nanoseconds());
2021-11-17 08:45:25 +00:00
2022-01-21 13:07:33 +00:00
}
2021-10-27 21:56:21 +00:00
}
2021-11-10 15:21:32 +00:00
}