uaveiro-leci/1ano/isd/quartus-projects/DecoderDemo/WaveformDecoderNode.vwf

331 lines
6.5 KiB
Plaintext

/*<simulation_settings>
<ftestbench_cmd>quartus_eda --gen_testbench --tool=modelsim_oem --format=vhdl --write_settings_files=off DecoderDemo -c DecoderDemo --vector_source="/home/rubeng/Documents/UAlinux/ISD/Quartus Prime/WaveformDecoderNode.vwf" --testbench_file="/home/rubeng/Documents/UAlinux/ISD/Quartus Prime/simulation/qsim/WaveformDecoderNode.vwf.vht"</ftestbench_cmd>
<ttestbench_cmd>quartus_eda --gen_testbench --tool=modelsim_oem --format=vhdl --write_settings_files=off DecoderDemo -c DecoderDemo --vector_source="/home/rubeng/Documents/UAlinux/ISD/Quartus Prime/WaveformDecoderNode.vwf" --testbench_file="/home/rubeng/Documents/UAlinux/ISD/Quartus Prime/simulation/qsim/WaveformDecoderNode.vwf.vht"</ttestbench_cmd>
<fnetlist_cmd>quartus_eda --write_settings_files=off --simulation --functional=on --flatten_buses=off --tool=modelsim_oem --format=vhdl --output_directory="/home/rubeng/Documents/UAlinux/ISD/Quartus Prime/simulation/qsim/" DecoderDemo -c DecoderDemo</fnetlist_cmd>
<tnetlist_cmd>quartus_eda --write_settings_files=off --simulation --functional=off --flatten_buses=off --timescale=1ps --tool=modelsim_oem --format=vhdl --output_directory="/home/rubeng/Documents/UAlinux/ISD/Quartus Prime/simulation/qsim/" DecoderDemo -c DecoderDemo</tnetlist_cmd>
<modelsim_script>onerror {exit -code 1}
vlib work
vcom -work work DecoderDemo.vho
vcom -work work WaveformDecoderNode.vwf.vht
vsim -c -t 1ps -L cycloneive -L altera -L altera_mf -L 220model -L sgate -L altera_lnsim work.Dec2_4_vhd_vec_tst
vcd file -direction DecoderDemo.msim.vcd
vcd add -internal Dec2_4_vhd_vec_tst/*
vcd add -internal Dec2_4_vhd_vec_tst/i1/*
proc simTimestamp {} {
echo "Simulation time: $::now ps"
if { [string equal running [runStatus]] } {
after 2500 simTimestamp
}
}
after 2500 simTimestamp
run -all
quit -f
</modelsim_script>
<modelsim_script_timing>onerror {exit -code 1}
vlib work
vcom -work work DecoderDemo.vho
vcom -work work WaveformDecoderNode.vwf.vht
vsim -c -t 1ps -sdfmax Dec2_4_vhd_vec_tst/i1=DecoderDemo_vhd.sdo -L cycloneive -L altera -L altera_mf -L 220model -L sgate -L altera_lnsim work.Dec2_4_vhd_vec_tst
vcd file -direction DecoderDemo.msim.vcd
vcd add -internal Dec2_4_vhd_vec_tst/*
vcd add -internal Dec2_4_vhd_vec_tst/i1/*
proc simTimestamp {} {
echo "Simulation time: $::now ps"
if { [string equal running [runStatus]] } {
after 2500 simTimestamp
}
}
after 2500 simTimestamp
run -all
quit -f
</modelsim_script_timing>
<hdl_lang>vhdl</hdl_lang>
</simulation_settings>*/
/*
WARNING: Do NOT edit the input and output ports in this file in a text
editor if you plan to continue editing the block that represents it in
the Block Editor! File corruption is VERY likely to occur.
*/
/*
Copyright (C) 2020 Intel Corporation. All rights reserved.
Your use of Intel Corporation's design tools, logic functions
and other software and tools, and any partner logic
functions, and any output files from any of the foregoing
(including device programming or simulation files), and any
associated documentation or information are expressly subject
to the terms and conditions of the Intel Program License
Subscription Agreement, the Intel Quartus Prime License Agreement,
the Intel FPGA IP License Agreement, or other applicable license
agreement, including, without limitation, that your use is for
the sole purpose of programming logic devices manufactured by
Intel and sold by Intel or its authorized distributors. Please
refer to the applicable agreement for further details, at
https://fpgasoftware.intel.com/eula.
*/
HEADER
{
VERSION = 1;
TIME_UNIT = ns;
DATA_OFFSET = 0.0;
DATA_DURATION = 1000.0;
SIMULATION_TIME = 0.0;
GRID_PHASE = 0.0;
GRID_PERIOD = 10.0;
GRID_DUTY_CYCLE = 50;
}
SIGNAL("E0L")
{
VALUE_TYPE = NINE_LEVEL_BIT;
SIGNAL_TYPE = SINGLE_BIT;
WIDTH = 1;
LSB_INDEX = -1;
DIRECTION = INPUT;
PARENT = "";
}
SIGNAL("E1")
{
VALUE_TYPE = NINE_LEVEL_BIT;
SIGNAL_TYPE = SINGLE_BIT;
WIDTH = 1;
LSB_INDEX = -1;
DIRECTION = INPUT;
PARENT = "";
}
SIGNAL("X0")
{
VALUE_TYPE = NINE_LEVEL_BIT;
SIGNAL_TYPE = SINGLE_BIT;
WIDTH = 1;
LSB_INDEX = -1;
DIRECTION = INPUT;
PARENT = "";
}
SIGNAL("Y0")
{
VALUE_TYPE = NINE_LEVEL_BIT;
SIGNAL_TYPE = SINGLE_BIT;
WIDTH = 1;
LSB_INDEX = -1;
DIRECTION = OUTPUT;
PARENT = "";
}
SIGNAL("Y1")
{
VALUE_TYPE = NINE_LEVEL_BIT;
SIGNAL_TYPE = SINGLE_BIT;
WIDTH = 1;
LSB_INDEX = -1;
DIRECTION = OUTPUT;
PARENT = "";
}
SIGNAL("Y2")
{
VALUE_TYPE = NINE_LEVEL_BIT;
SIGNAL_TYPE = SINGLE_BIT;
WIDTH = 1;
LSB_INDEX = -1;
DIRECTION = OUTPUT;
PARENT = "";
}
SIGNAL("Y3")
{
VALUE_TYPE = NINE_LEVEL_BIT;
SIGNAL_TYPE = SINGLE_BIT;
WIDTH = 1;
LSB_INDEX = -1;
DIRECTION = OUTPUT;
PARENT = "";
}
SIGNAL("X1")
{
VALUE_TYPE = NINE_LEVEL_BIT;
SIGNAL_TYPE = SINGLE_BIT;
WIDTH = 1;
LSB_INDEX = -1;
DIRECTION = INPUT;
PARENT = "";
}
TRANSITION_LIST("E0L")
{
NODE
{
REPEAT = 1;
NODE
{
REPEAT = 5;
LEVEL 0 FOR 100.0;
LEVEL 1 FOR 100.0;
}
}
}
TRANSITION_LIST("E1")
{
NODE
{
REPEAT = 1;
NODE
{
REPEAT = 10;
LEVEL 0 FOR 50.0;
LEVEL 1 FOR 50.0;
}
}
}
TRANSITION_LIST("X0")
{
NODE
{
REPEAT = 1;
NODE
{
REPEAT = 40;
LEVEL 0 FOR 12.5;
LEVEL 1 FOR 12.5;
}
}
}
TRANSITION_LIST("Y0")
{
NODE
{
REPEAT = 1;
LEVEL X FOR 1000.0;
}
}
TRANSITION_LIST("Y1")
{
NODE
{
REPEAT = 1;
LEVEL X FOR 1000.0;
}
}
TRANSITION_LIST("Y2")
{
NODE
{
REPEAT = 1;
LEVEL X FOR 1000.0;
}
}
TRANSITION_LIST("Y3")
{
NODE
{
REPEAT = 1;
LEVEL X FOR 1000.0;
}
}
TRANSITION_LIST("X1")
{
NODE
{
REPEAT = 1;
NODE
{
REPEAT = 20;
LEVEL 0 FOR 25.0;
LEVEL 1 FOR 25.0;
}
}
}
DISPLAY_LINE
{
CHANNEL = "E0L";
EXPAND_STATUS = COLLAPSED;
RADIX = Binary;
TREE_INDEX = 0;
TREE_LEVEL = 0;
}
DISPLAY_LINE
{
CHANNEL = "E1";
EXPAND_STATUS = COLLAPSED;
RADIX = Binary;
TREE_INDEX = 1;
TREE_LEVEL = 0;
}
DISPLAY_LINE
{
CHANNEL = "X1";
EXPAND_STATUS = COLLAPSED;
RADIX = Binary;
TREE_INDEX = 2;
TREE_LEVEL = 0;
}
DISPLAY_LINE
{
CHANNEL = "X0";
EXPAND_STATUS = COLLAPSED;
RADIX = Binary;
TREE_INDEX = 3;
TREE_LEVEL = 0;
}
DISPLAY_LINE
{
CHANNEL = "Y0";
EXPAND_STATUS = COLLAPSED;
RADIX = Binary;
TREE_INDEX = 4;
TREE_LEVEL = 0;
}
DISPLAY_LINE
{
CHANNEL = "Y1";
EXPAND_STATUS = COLLAPSED;
RADIX = Binary;
TREE_INDEX = 5;
TREE_LEVEL = 0;
}
DISPLAY_LINE
{
CHANNEL = "Y2";
EXPAND_STATUS = COLLAPSED;
RADIX = Binary;
TREE_INDEX = 6;
TREE_LEVEL = 0;
}
DISPLAY_LINE
{
CHANNEL = "Y3";
EXPAND_STATUS = COLLAPSED;
RADIX = Binary;
TREE_INDEX = 7;
TREE_LEVEL = 0;
}
TIME_BAR
{
TIME = 0;
MASTER = TRUE;
}
;