% Joint probability distribution P_XY = [0.3, 0.2, 0; 0.1, 0.15, 0.05; 0, 0.1, 0.1]; % Values of X and Y X_vals = [0, 1, 2]; Y_vals = [0, 1, 2]; % Marginal distributions P_X = sum(P_XY, 2); P_Y = sum(P_XY, 1); % Mean of X and Y E_X = sum(X_vals .* P_X'); E_Y = sum(Y_vals .* P_Y); % Variance of X and Y Var_X = sum((X_vals - E_X).^2 .* P_X'); Var_Y = sum((Y_vals - E_Y).^2 .* P_Y); % Covariance of X and Y E_XY = sum(sum((X_vals' * Y_vals) .* P_XY)); Cov_XY = E_XY - E_X * E_Y; % Correlation coefficient rho_XY = Cov_XY / sqrt(Var_X * Var_Y); % Display results fprintf('Marginal PMF of X: \n'); disp(P_X'); fprintf('Marginal PMF of Y: \n'); disp(P_Y); fprintf('Mean of X: %.2f\n', E_X); fprintf('Mean of Y: %.2f\n', E_Y); fprintf('Variance of X: %.2f\n', Var_X); fprintf('Variance of Y: %.2f\n', Var_Y); fprintf('Covariance of X and Y: %.2f\n', Cov_XY); fprintf('Correlation coefficient between X and Y: %.2f\n', rho_XY); % Plot Marginal PMFs figure; subplot(1,2,1); stem(X_vals, P_X, 'filled'); title('Marginal PMF of X'); xlabel('X'); ylabel('P(X)'); subplot(1,2,2); stem(Y_vals, P_Y, 'filled'); title('Marginal PMF of Y'); xlabel('Y'); ylabel('P(Y)');