
Ports, Services, Transport

Redes de Comunicações 1

Licenciatura em Engenharia de Comunicações e
Informática

DETI-UA, 2021/2022

Transport Layer 3-2

Transport services and protocols

 provide logical communication
between application processes
running on different hosts

 transport protocols run in end
systems

 sender side: breaks
application messages into
segments, passes to
network layer

 receiver side: reassembles
segments into messages,
passes to application layer

 two transport protocols
available to applications:

 TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-3

Internet transport-layer protocols

 reliable, in-order
delivery: TCP
 connection setup

 flow control

 congestion control

 unreliable, unordered
delivery: UDP
 extension of “best-

effort” IP

 services not available:
 delay guarantees

 bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

Reference Model

Transport Layer 3-4

MULTIPLEXING AND
DEMULTIPLEXING

5

Transport Layer 3-6

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at receiver host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at sender host:

Transport Layer 3-7

How demultiplexing works
 host receives IP datagrams

 each datagram has source
IP address, destination IP
address

 each datagram carries 1
transport-layer segment

 each segment has source,
destination port number

 host uses IP addresses and
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Transport Layer 3-8

Connectionless demultiplexing

 Create sockets with port
numbers:

DatagramSocket mySocket1 = new

DatagramSocket(12534);

DatagramSocket mySocket2 = new

DatagramSocket(12535);

 UDP socket identified by
2-tuple:

(destination IP address, destination port
number)

 When host receives UDP
segment:
 checks destination port

number in segment

 directs UDP segment to
socket with that port
number

 IP datagrams with
different source IP
addresses and/or source
port numbers are
directed to the same
socket

Transport Layer 3-9

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

Transport Layer 3-10

Connection-oriented demux

 TCP socket identified
by 4-tuple:
 source IP address

 source port number

 destination IP address

 destination port number

 receiver host uses all
four values to direct
segment to appropriate
socket

 Server host may support
many simultaneous TCP
sockets:
 each socket identified by

its own 4-tuple

 For example, Web
servers have different
sockets for each
connecting client

Transport Layer 3-11

Connection-oriented demux
(cont)

client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Transport Layer 3-12

Connection-oriented demux:
Threaded Web Server

client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Allocated Ports

Transport Layer 3-13

UDP

14

User Datagram Protocol

 Provides a seamless service to transport data with
the performance characteristics offered by IP

 Allows the exchange of data between applications,
through a header and port identifier

 Allows the sending of data for multiple destinations
(multi-point communications)

 Checksum: datagrama UDP + pseudoheader IP (ID protocol IP,
sender IP address, destination IP address, lenght IP datagram)
 Verify if the message was sent between the correct endpoints

15

TCP

16

Transport Layer 3-17

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow in

same connection

 MSS: Maximum Segment
Size; in general, MTU of
attached link – (IP + TCP
header lengths)

 connection-oriented:
 handshaking (exchange of

control messages): initiates
sender and receiver state
before data exchange

 flow controlled:
 sender will not overwhelm

receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
stream:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

Transport Layer 3-18

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

window

Urg data pointerchecksum

FSRPAU
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection setup

and teardown
commands

bytes that
receiver is
willing to
accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-19

TCP seq. numbers and ACKs

Seq. number:

 byte stream
“number” of first
byte in segment’s
data

ACKs:

 seq. number of next
byte expected from
other side

 cumulative ACK

Host A Host B

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

Establishment of a TCP Session

Transport Layer 3-20

Termination of a TCP Session

Transport Layer 3-21

Flow Control

Transport Layer 3-22

TCP Header Fields

 Sequence Number : data already sent

Acknowledge Number : data already
received

Window : receiver informs sender of how
many octets is ready to receive

 Sequence Number refers to transmission
side, Acknowledge Number and Window
refer to the opposite direction

Transport Layer 3-23

Example (1)

 Consider a TCP connection from A to B. In both
stations, TCP:

 Considers a reception buffer of 2000 bytes

 Segments information is packets with a maximum of
1000 bytes

 Station A chooses an initial Sequence Number of
1515, and Station B chooses an initial Sequence
Number of 502

 Station A sends a block of 5300 bytes and station B
does not send data.

 Draw the timing diagram of TCP segments
exchanged, including establishment and termination.

Transport Layer 3-24

Example (2)

 Consider a TCP connection between 2 stations A and B.
They exchanged the following TCP segments. Which
station is the client? What is the size (in bytes) of the
data field in each segment, and the overall size of the
data?

Transport Layer 3-25

Transport Layer 3-26

How to know that a packet shall be
retransmitted?

After a specific time, the packet needs to be
considered lost

Long time always?

Small time always?

Should depend on the delays in the network/path

Should depend on the round trip time

Transport Layer 3-27

TCP Round Trip Time (RTT) and
Timeout

Question: how to set
TCP timeout value?

 larger than RTT
 but RTT varies

 too short: premature
timeout

 unnecessary
retransmissions

 too long: slow reaction
to segment loss

Question: how to estimate
RTT?

 SampleRTT: measured time from
segment transmission until ACK
receipt

 ignore retransmissions

 SampleRTT will vary, want
estimated RTT “smoother”

 to average several recent
measurements, and not used
just the last SampleRTT

Transport Layer 3-28

TCP Round Trip Time (RTT) and
Timeout
EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

 Exponential weighted moving average

 Influence of past sample decreases exponentially fast

 Typical value:  = 0.125

EstimatedRTT after the Kth ACK
SampleRTT of Kth ACK

Transport Layer 3-29

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

Transport Layer 3-30

TCP Round Trip Time and Timeout

Setting the timeout
 EstimatedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin

 first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

bxRTT

IETF RFC 793 proposes 1.3 < b < 2.0

DevRTT = (1-b)*DevRTT +
b*|SampleRTT-EstimatedRTT|

(typically, b = 0.25)

Then set timeout interval:

TCP Retransmissions

Transport Layer 3-32

TCP Slow Start

 When connection
begins, increase rate
exponentially until
first loss event:
 double CongWin every

RTT

 done by incrementing
CongWin for every ACK
received

 Summary: initial rate
is slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

Transport Layer 3-33

TCP Slow Start

 When connection begins,
CongWin = 1 packet

 Each time an ACK is
received, CongWin is
incremented by 1
segment of maximum
size

 When connection begins,
increase rate
exponentially fast until
first loss event

Transport Layer 3-34

TCP Congestion avoidance

 When the rate is larger, increase the window more
carefully
 Congestion avoidance

 Window increases linearly to avoid losses

Transport Layer 3-35

Fast Retransmission mechanism

 Detect lost segments
via duplicate ACKs
 Sender often sends

many segments back-to-
back

 If segment is lost,
there will likely be many
duplicate ACKs.

 If sender receives 3
more ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
 fast retransmission

mechanism: when 3
duplicate ACKs are
received, resend segment
before timer expires

Duplicate ACKs before timeout: network is not too congested!

36

Duplicate ACKs and
fast retransmission

ACK 2

ACK 3

ACK 3

ACK 3

ACK 3

ACK 7

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Retranmission
of segment 3

Sender Receiver

 Duplicate ACKs
 Sender receives 3 duplicate

ACKs of segment 3

 Fast retransmission
 Sender retransmits segment 3

before Timeout of segment 3
expires

Transport Layer 3-37

Refinement: inferring loss

 After 3 dup ACKs:

 CongWin is cut in half

 window then grows
linearly

 But after timeout event:

 CongWin instead set to
1 MSS;

 window then grows
exponentially

 to a threshold, then
grows linearly

 3 dup ACKs indicates
network capable of
delivering some segments
 timeout indicates a
“more alarming”
congestion scenario

Philosophy:

38

TCP Tahoe versus TCP Reno

TCP Tahoe:

 Congestion detection
based only on Timeouts

 Slow start at beginning and
when timeout occurs

TCP Reno

 Congestion detection
based on Timeouts and 3
duplicated ACKs

 When timeout occurs
 TCP Tahoe

 When 3 duplicated ACKs
 Fast retransmission

 Fast recovery

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

c
o

n
g

e
st

io
n

 w
in

d
o

w
 s

iz
e

(s
e

g
m

e
n

ts
)

Series1 Series2

threshold

TCP
Tahoe

TCP
Reno

UDP and TCP coexistence

Transport Layer 3-39

UDP and TCP coexistence

Transport Layer 3-40

IPTV: Reliable UDP (R-UDP)

Transport Layer 3-41

 Sent in multicast UDP to the SetTopBox

 Losses found
 Losses information sent in unicast UDP (packet sequence

numbers)

 Retransmission sent in unicast UDP

 Buffer in the application
 Can go up to 8 sec (normal is 1 sec)

 If retransmission arrives before play-out time, it is included
in the play-out

 STB in places with real-time visualizations (such as football
games)

• Very small buffers

IPTV: Instant Channel Change (ICC)

Transport Layer 3-42

 Normal channel change
 Multicast join to the server, all routers will have to start

sending the multicast flow

 Buffers have to fill to start the play-out (at the rate of the
multicast flow)

 ICC
 Parallel to the multicast join to the server, there is a

message to the distribution server

 This server maintains the last 8 sec of all channels

 Sends by unicast stream the latest information at the
fastest path rate

 Fills the buffer more quickly and play-out the video (40
msec)

 When multicast process is done, normal multicast will
be received

Bibliography to study

 J. Kurose, K. Ross, “Computer Networking:
A Top-Down Approach”, Addison-Wesley,
4th Edition
 Chapter 3 “Transport Layer”

