N.° mec.:

Classificação (espaco reservado ao professor):

$E \setminus C$	0	1	2	3
0	0	7	14	20
1	0	4	10	
2	0	0		
3	0			

Duração: 0h15

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

2021/22 Cálculo I - agr. 4

2.° miniteste: turma TP4-9; versão A

- Desenha uma circunferência à volta da opção A, B ou C que consideres correta em cada uma das três questões abaixo.
- Relativamente a cada uma dessas questões, a cotação preliminar a atribuir será de 10 pontos se a escolha estiver correta, de 0 pontos se nenhuma opção for escolhida ou se for escolhida mais do que uma, e de -5 pontos se a escolha estiver errada. Designando por Sa soma aritmética das cotações preliminares obtidas nas três questões, a nota na escala de 0 a 20 valores neste miniteste será dada pela expressão $\lceil \frac{2}{3} \max\{S,0\} \rceil$ (i.e, será a nota no quadro acima que resulta do cruzamento do n.º de respostas certas C com o n.º de respostas erradas E).
- Quando se refere "comparação" nas questões abaixo, tanto pode ser o critério, digamos inicial, de comparação, como o da comparação por passagem ao limite, tanto no caso de séries como no de integrais impróprios. O que interessa é que um deles permita chegar à opção de resposta correta.
- 1. Se na determinação da natureza da série $\sum_{n=2}^{\infty} \frac{\ln(n) \sin \frac{1}{\sqrt{n}}}{n}$ por comparação escolhermos comparar com a série de natureza conhecida $\sum_{n=0}^{\infty} \frac{1}{n}$, qual das seguintes afirmações é verdadeira?
 - A. Da comparação sai que a série dada é divergente.
 - **B.** Da comparação sai que a série dada é convergente.
 - C. Esta comparação não permite concluir sobre a natureza da série dada.
- 2. Escolhe a série de natureza conhecida que, por comparação, permite concluir sobre a natureza da série $\sum_{n=3}^{\infty} \frac{n4^n}{7^n}$:

$$\mathbf{A.} \quad \sum_{n=3}^{\infty} \left(\frac{4}{7}\right)^n.$$

$$\mathbf{B.} \quad \sum_{n=2}^{\infty} \left(\frac{5}{7}\right)^n.$$

A.
$$\sum_{n=3}^{\infty} \left(\frac{4}{7}\right)^n$$
. B. $\sum_{n=3}^{\infty} \left(\frac{5}{7}\right)^n$. C. $\sum_{n=3}^{\infty} \left(\frac{4}{7}\right)^{-n}$.

3. Escolhe o integral impróprio de natureza conhecida que, por comparação, permite concluir sobre a natureza do integral impróprio $\int_4^\infty \frac{\sqrt[3]{x}}{\sqrt{x}+\sqrt[3]{x^2}} \, dx$:

A.
$$\int_{4}^{\infty} \frac{1}{\sqrt[3]{x}} dx$$

$$\mathbf{B.} \quad \int_{4}^{\infty} \frac{1}{\sqrt[6]{x}} \, dx.$$

A.
$$\int_{4}^{\infty} \frac{1}{\sqrt[3]{x}} dx$$
. **B.** $\int_{4}^{\infty} \frac{1}{\sqrt[6]{x}} dx$. **C.** $\int_{4}^{\infty} x^{-\frac{7}{6}} dx$.

N.° mec.:

Classificação (espaco reservado ao professor):

$E \setminus C$	0	1	2	3
0	0	7	14	20
1	0	4	10	
2	0	0		
3	0			

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

2021/22 Cálculo I - agr. 4

2.° miniteste: turma TP4-9; versão B Duração: 0h15

- Desenha uma circunferência à volta da opção A, B ou C que consideres correta em cada uma das três questões abaixo.
- Relativamente a cada uma dessas questões, a cotação preliminar a atribuir será de 10 pontos se a escolha estiver correta, de 0 pontos se nenhuma opção for escolhida ou se for escolhida mais do que uma, e de -5 pontos se a escolha estiver errada. Designando por Sa soma aritmética das cotações preliminares obtidas nas três questões, a nota na escala de 0 a 20 valores neste miniteste será dada pela expressão $\left[\frac{2}{3}\max\{S,0\}\right]$ (i.e, será a nota no quadro acima que resulta do cruzamento do n.º de respostas certas C com o n.º de respostas erradas E).
- Quando se refere "comparação" nas questões abaixo, tanto pode ser o critério, digamos inicial, de comparação, como o da comparação por passagem ao limite, tanto no caso de séries como no de integrais impróprios. O que interessa é que um deles permita chegar à opção de resposta correta.
- 1. Se na determinação da natureza da série $\sum\limits_{n=3}^{\infty}\frac{\ln(n)\sin\frac{1}{n}}{n}$ por comparação escolhermos comparar com a série de natureza conhecida $\sum_{n=3}^{\infty} \frac{1}{n\sqrt{n}}$, qual das seguintes afirmações é verdadeira?
 - A. Da comparação sai que a série dada é divergente.
 - B. Da comparação sai que a série dada é convergente.
 - C. Esta comparação não permite concluir sobre a natureza da série dada.
- 2. Escolhe a série de natureza conhecida que, por comparação, permite concluir sobre a natureza da série $\sum_{n=2}^{\infty} \frac{7^n}{n4^n}$:

A.
$$\sum_{n=2}^{\infty} \left(\frac{7}{4}\right)^n$$
. B.
$$\sum_{n=2}^{\infty} \left(\frac{7}{4}\right)^n$$

A.
$$\sum_{n=2}^{\infty} \left(\frac{7}{4}\right)^n$$
. **B.** $\sum_{n=2}^{\infty} \left(\frac{7}{4}\right)^{-n}$. **C.** $\sum_{n=2}^{\infty} \left(\frac{7}{5}\right)^n$.

3. Escolhe o integral impróprio de natureza conhecida que, por comparação, permite concluir sobre a natureza do integral impróprio $\int_1^\infty \frac{\sqrt[3]{x}}{\sqrt{x^3} + \sqrt[3]{x^4}} \, dx$:

A.
$$\int_{1}^{\infty} \frac{1}{\sqrt[3]{x^4}} dx$$
. **B.** $\int_{1}^{\infty} x^{-\frac{7}{6}} dx$. **C.** $\int_{1}^{\infty} \frac{1}{x} dx$.

B.
$$\int_{1}^{\infty} x^{-\frac{7}{6}} dx$$

C.
$$\int_{1}^{\infty} \frac{1}{x} dx.$$

N.° mec.:

Classificação (espaco reservado ao professor):

$E \setminus C$	0	1	2	3
0	0	7	14	20
1	0	4	10	
2	0	0		
3	0			

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

2021/22 Cálculo I - agr. 4

2.° miniteste: turma TP4-9; versão C Duração: 0h15

- Desenha uma circunferência à volta da opção A, B ou C que consideres correta em cada uma das três questões abaixo.
- Relativamente a cada uma dessas questões, a cotação preliminar a atribuir será de 10 pontos se a escolha estiver correta, de 0 pontos se nenhuma opção for escolhida ou se for escolhida mais do que uma, e de -5 pontos se a escolha estiver errada. Designando por Sa soma aritmética das cotações preliminares obtidas nas três questões, a nota na escala de 0 a 20 valores neste miniteste será dada pela expressão $\left[\frac{2}{3}\max\{S,0\}\right]$ (i.e, será a nota no quadro acima que resulta do cruzamento do n.º de respostas certas C com o n.º de respostas erradas E).
- Quando se refere "comparação" nas questões abaixo, tanto pode ser o critério, digamos inicial, de comparação, como o da comparação por passagem ao limite, tanto no caso de séries como no de integrais impróprios. O que interessa é que um deles permita chegar à opção de resposta correta.
- 1. Se na determinação da natureza da série $\sum_{n=4}^{\infty} \frac{4^n}{n7^n}$ por comparação escolhermos comparar com a série de natureza conhecida $\sum_{n=4}^{\infty} \left(\frac{3}{7}\right)^n$, qual das seguintes afirmações é verdadeira?
 - A. Da comparação sai que a série dada é divergente.
 - **B.** Da comparação sai que a série dada é convergente.
 - C. Esta comparação não permite concluir sobre a natureza da série dada.
- 2. Escolhe a série de natureza conhecida que, por comparação, permite concluir sobre a natureza da série $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n} + \sqrt[3]{n^2}}:$

$$\mathbf{A.} \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt[6]{n}}.$$

B.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$
.

C.
$$\sum_{n=1}^{\infty} n^{-\frac{7}{6}}$$
.

3. Escolhe o integral impróprio de natureza conhecida que, por comparação, permite concluir sobre a natureza do integral impróprio $\int_2^\infty \frac{\ln x}{x^2 \sin \frac{1}{x}} dx$:

$$\mathbf{A.} \quad \int_2^\infty \frac{1}{\sqrt{x}} \, dx$$

A.
$$\int_2^\infty \frac{1}{\sqrt{x}} dx$$
. **B.** $\int_2^\infty \frac{1}{x\sqrt{x}} dx$. **C.** $\int_2^\infty \frac{1}{x} dx$.

C.
$$\int_{2}^{\infty} \frac{1}{x} dx$$

N.° mec.:

Classificação (espaco reservado ao professor):

E/C	0	1	2	3
0	0	7	14	20
1	0	4	10	
2	0	0		
3	0			

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

2021/22 Cálculo I - agr. 4

2.° miniteste: turma TP4-9; versão D Duração: 0h15

- Desenha uma circunferência à volta da opção A, B ou C que consideres correta em cada uma das três questões abaixo.
- Relativamente a cada uma dessas questões, a cotação preliminar a atribuir será de 10 pontos se a escolha estiver correta, de 0 pontos se nenhuma opção for escolhida ou se for escolhida mais do que uma, e de -5 pontos se a escolha estiver errada. Designando por Sa soma aritmética das cotações preliminares obtidas nas três questões, a nota na escala de 0 a 20 valores neste miniteste será dada pela expressão $\left[\frac{2}{3}\max\{S,0\}\right]$ (i.e, será a nota no quadro acima que resulta do cruzamento do n.º de respostas certas C com o n.º de respostas erradas E).
- Quando se refere "comparação" nas questões abaixo, tanto pode ser o critério, digamos inicial, de comparação, como o da comparação por passagem ao limite, tanto no caso de séries como no de integrais impróprios. O que interessa é que um deles permita chegar à opção de resposta correta.
- 1. Se na determinação da natureza da série $\sum_{n=1}^{\infty} \frac{7^n}{n4^n}$ por comparação escolhermos comparar com a série de natureza conhecida $\sum_{n=1}^{\infty} \left(\frac{7}{6}\right)^n$, qual das seguintes afirmações é verdadeira?
 - A. Da comparação sai que a série dada é divergente.
 - **B.** Da comparação sai que a série dada é convergente.
 - C. Esta comparação não permite concluir sobre a natureza da série dada.
- 2. Escolhe a série de natureza conhecida que, por comparação, permite concluir sobre a natureza da série $\sum_{n=4}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3} + \sqrt[3]{n^4}}:$

$$\mathbf{A.} \quad \sum_{n=4}^{\infty} \frac{1}{n}.$$

B.
$$\sum_{n=4}^{\infty} \frac{1}{\sqrt[3]{n^4}}$$
.

C.
$$\sum_{n=4}^{\infty} n^{-\frac{7}{6}}$$
.

3. Escolhe o integral impróprio de natureza conhecida que, por comparação, permite concluir sobre a natureza do integral impróprio $\int_3^\infty \frac{\sin\frac{1}{x}}{\sqrt{x}\ln x} dx$:

A.
$$\int_3^\infty \frac{1}{x\sqrt{x}} dx.$$
 B.
$$\int_3^\infty \frac{1}{x} dx.$$
 C.
$$\int_3^\infty \frac{1}{x^2} dx.$$

$$\mathbf{B.} \quad \int_3^\infty \frac{1}{x} \, dx$$

C.
$$\int_{3}^{\infty} \frac{1}{x^2} dx$$