Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 4

2022/23

Folha 1: Séries de Potências — Fórmula de Taylor — Série de Taylor

1. Determine o domínio de convergência das seguintes séries de potências, indicando os pontos onde a convergência é simples ou absoluta.

(a)
$$\sum_{n=1}^{\infty} n(n+1)x^n;$$

(b)
$$\sum_{n=1}^{\infty} \frac{(2x)^n}{(n-1)!}$$
;

(a)
$$\sum_{n=1}^{\infty} n(n+1)x^n$$
; (b) $\sum_{n=1}^{\infty} \frac{(2x)^n}{(n-1)!}$; (c) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$;

(d)
$$\sum_{n=1}^{\infty} \frac{(2x-3)^n}{2n+4}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^2}{n!} x^n ;$$

(d)
$$\sum_{n=1}^{\infty} \frac{(2x-3)^n}{2n+4}$$
; (e) $\sum_{n=1}^{\infty} \frac{n^2}{n!} x^n$; (f) $\sum_{n=2}^{\infty} \frac{n!(x-2)^n}{n-1}$;

(g)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n} (x+2)^n$$
; (h) $\sum_{n=0}^{\infty} \frac{3^n}{2+n^3} x^n$; (i) $\sum_{n=2}^{\infty} \frac{x^{3n}}{\ln n}$;

(h)
$$\sum_{n=0}^{\infty} \frac{3^n}{2+n^3} x^n$$

(i)
$$\sum_{n=2}^{\infty} \frac{x^{3n}}{\ln n}$$

(j)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n6^n} (3x-2)^n$$

(j)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n6^n} (3x-2)^n$$
; (k) $\sum_{n=0}^{\infty} \frac{n+1}{2^n} (x-2)^n$; (l) $\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{2n+1}} x^n$.

(1)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{2n+1}} x^n$$

2. Mostre que:

- (a) se $\sum_{n=0}^{\infty} a_n x^n$ é absolutamente convergente num dos extremos do seu domínio de convergência, então também é absolutamente convergente no outro extremo;
- (b) se o domínio de convergência de $\sum_{n=0}^{+\infty} a_n x^n$ é]-r,r], então a série é simplesmente convergente em x = r.
- 3. Determine os polinómios de Taylor seguintes:
 - (a) $T_0^3(x^3+2x+1)$;
 - (b) $T_{\pi}^{3}(\cos x)$;
 - (c) $T_1^3(xe^x)$;
 - (d) $T_0^5(\sin x)$;
 - (e) $T_0^6(\sin x)$;
 - (f) $T_1^n(\ln x) \quad (n \in \mathbb{N}).$
- 4. Considere $f(x) = e^x$.
 - (a) Escreva a fórmula de MacLaurin de ordem n da função f.
 - (b) Mostre que o polinómio de MacLaurin de ordem n permite aproximar e^x no intervalo] – 1,0[, com erro inferior a $\frac{1}{(n+1)!}$.
 - (c) Escolha um dos polinómios de MacLaurin de f e use-o para obter uma aproximação de $\frac{1}{\sqrt{e}}$, indicando uma estimativa para o erro cometido nessa aproximação.
- 5. Usando o resto de Lagrange, determine um majorante para o erro cometido na aproximação de sen(3) quando se usa o polinómio de Taylor de ordem 5 em torno do ponto $a=\pi$.

- 6. Mostre que o polinómio de MacLaurin de ordem 7 da função seno permite aproximar os valores desta função, no intervalo [-1,1], com erro inferior a $\frac{1}{2} \times 10^{-4}$.
- 7. (a) Obtenha o polinómio de Taylor de ordem $n \in \mathbb{N}$ da função $f(x) = \frac{1}{x}$ no ponto c=1.
 - (b) Determine um valor de n para o qual se garanta que o polinómio $T_1^n\left(\frac{1}{x}\right)$, obtido na alínea anterior, aproxime $\frac{1}{x}$ no intervalo [0.9, 1.1], com erro inferior a 10^{-3} .
- 8. Determine o menor valor de n tal que o polinómio de MacLaurin de ordem n da função $f(x) = e^x$ aproxime f(1) com erro inferior a 10^{-3} .
- 9. Mostre, usando a fórmula de Taylor, que $\ln(1+x) \le x$, para todo x > -1.
- 10. Partindo da representação

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad -1 < x < 1,$$

determine uma representação em série de potências para cada uma das seguintes funções, indicando o intervalo onde tal representação é válida:

(a)
$$\frac{1}{1-3x}$$
; (b) $\frac{2}{2+x}$; (c) $\frac{1}{x}$.

11. Desenvolva a função $f(x) = \frac{1}{x+1}$ em série de potências de x-3, indicando o maior intervalo onde o desenvolvimento é válido.