Fundamentos de Programacao

Antonio J. R. Neves
Joao Rodrigues

Departamento de Electrénica, Telecomunicagoes e Informatica
Universidade de Aveiro

Topics

Getting started with Python

Values and types

Variables

Keywords

Operators, expressions and statements
Functions

Console input/output

Scripts

Getting started with Python

Python is a general purpose programming language well known
for its elegant syntax and readable code.

With Python it is possible to do everything from GUI
development, web applications, system administration tasks,
data analysis, visualization, etc.

Python is an interpreted language - an interpreter parses and
executes a Python program on a line by line basis. This is
usually slower than compiled languages.

In Python, basic data structures and small utility functions are
built-in, you don't need to define them.

Moreover, Python has hundreds of extension libraries (modules)
available at https://pypi.Python.org/

Python in interactive mode

There are two ways to use the interpreter: interactive mode and
script mode.

Execute python3 with no argument to run in interactive mode.
Then, type Python statements and the interpreter displays the result:
S python3
>>> 1 + 1

2
>>>

The chevron, >>>, is the prompt the interpreter uses to indicate that
it is ready.

When you type an expression, the interpreter prints the result.
Then, it shows the prompt again.

Python in script mode

Alternatively, you can store the statements BRI EET

in a file, which is called a script or SRS

program, and use the interpreter to Print('The result is’)
execute it. By convention, Python scripts el

have names that end in . py.

fab width: 4 ~ Ln 3, Col 1 v INS

To execute the script, just call the interpreter and pass it the name of
the file. For example:

S python3 test.py
The result is
42

In script mode, Python does not show the prompt and does not print
results automatically. You need to call print ()!

The details of executing scripts may differ.

Script mode programming

Invoking the interpreter with a script parameter begins the execution of
the script. Python files have extension .py

Lines and indentation - Blocks of code are denoted by line
indentation, which is rigidly enforced. The number of spaces in the
indentation is variable, but all statements within the block must be
indented the same amount.

Statements in Python typically end with a new line. However, a
backslash (\) in the end of the line indicates that the statement
continues in the next line.

The semicolon (;) allows multiple statements on a single line.

A line containing only whitespace is known as a blank line and Python
totally ignores it.

What is a program?

« A program is a sequence of statements that specifies how to
perform a computation. The details look different in different
languages, but a few basic types of statement appear in just
about every language:

assignment: Store values in variables, to recall later on.

math: Perform basic mathematical operations.

input: Get data from the keyboard, a file, or some other device.
output: Display data on the screen or send data to a file.
conditional execution: Check for certain conditions and execute
the appropriate code.

repetition: Perform some action repeatedly, usually with some
variation.

 That is pretty much all there is to it. Every program, no matter
how complicated, is made up of statements like these.

Errors and debugging

Programming errors are called bugs.
Tracking down and correcting bugs is called debugging.

There are three kinds of errors: syntax errors, runtime errors,
and semantic errors.

A syntax error occurs if the program contains code that does
not respect the syntactical rules of the programming language.

A runtime error only appears after the program has started
running. They are often caused by type mismatches or failure
to deal with special cases (such as division by zero). These
errors are also called exceptions.

If there is a semantic error in a program, it may run with no
error messages, but it will produce the wrong results. The
program is not doing what the programmer intended. It is doing
exactly what it was told to do.

Values and types

A value is a piece of data in a program, such as a letter
or a number: 33, 3.14, 'ola', 1+27.

Values belong to different types (or classes). int,
float, str, complex.

Use the type function to find the type of a value:

>>> type('Hello, World!")
<class 'str'>

>>> type (17)

<class 'int'>

>>> type (3+57)

<class 'complex'>

Types determine what you can do with values. For
instance, you cannot add ints and strings:

>>> 3 + 'cats'
TypeError: unsupported operand type(s) for +:

Data types

« Python has several built-in data types, including:
o Numeric types: int, float, complex
o Boolean: bool (with values True and False).
o Strings: str,e.q. 'Hello'
o Lists: 1ist,e.g. [1, 3, 1]
o Tuples: tuple,e.g. (3, '"May', 1981)
o Sets: set,e.g. {2, 3, 5}
o Dictionaries: dict,e.g. {'eggs': 6, 'beer': 0.33}

« You can also define new data types — called classes —
but we’ll leave that for another course.

Conversion between types

Sometimes we need to convert values to a different type.
We use type conversion functions: str, int, float, ...

Just about any kind of value may be converted to string:

>>> str(l1+2)
'3'

>>> str(l1.0/2)
'0.5"

In fact, this happens implicitly when you print values.

Some strings may be converted to int or float:

>>> 100 + int('33")

133
>>> float ('0.12'") / 10000
1.2e-05

Converting a float to int truncates towards zero:

>>> int (2.78)
2

Variables and assignment

A variable is a name (aka identifier) that refers to a value.

An assignment statement assigns a value to a variable.

>>> n = 5
>>> pi = 3.14

In an expression, a variable is substituted by its value.

>>> 2*pi*n
31.4000

Variable names may include both letters and digits, but they
must begin with a letter.

Some keywords cannot be used as variable names, such as:
def, if, not, and, etc.

If you give a variable an illegal name, you get a syntax error:

>>> ‘7otrombones = 'big parade'
SyntaxError: invalid syntax

Reassignment

* You can assign a new value to an existing variable.

>>> n =
>>> prin
5
>>> n =
>>> prin
6

5
t(n)

n+ 1 # Is this valid? YES!

t (n) Play »

« The variable forgets the old value and stores the new one until
the next assignment!

« This implies that a variable may take different values during the
execution of a program and the order of operations is

important!

-

Variable assignment is fundamental
In imperative programming languages!

~

https://pythontutor.com/visualize.html#code=n%20%3D%205%0Aprint%28n%29%0An%20%3D%20n%2B1%0Aprint%28n%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

More on assignment

. Python allows simultaneous assignment like this:

name,

age,

height = "Maria",

21,

1.63

* There are special augmented assignment operators:

n

+= 1
—= pi
*= 1l4+p
/= 2.
5= 3

equivalent to

equivalent to

equivalent to

equivalent to

equivalent to

n

(1)

(p1)

(1+p)

(2.2)

(3)

Keywords

The Iinterpreter uses keywords to recognize the
structure of the program.

Keywords are reserved words: they cannot be used as
variable names or any other identifier.

In Python3, the keywords are:

False class finally 1is return

None continue for lambda try
True def from nonlocal while
and del global not with
as elif 1f or yield

assert else import pass

break except in raise

Operators, expressions and statements

Operators are special symbols that represent
computations (+, -, *, /, **, %, <=, or).

The values combined by operators are called operands.

For a given operator, operands must have compatible
types. The result type depends on the operand types.

An expression is a combination of values, variables,
and operators that results in a value.

A statement is a unit of code that the Python interpreter
can execute.

The important difference is that an expression has a
value (even if None); pure statements do not.

In script mode, an expression, all by itself, has no visible
effect (unlike interactive mode).

Arithmetic Operators: descending precedence
(same color [same precedence)

Operator Example Meaning Result
+ (unary) +a Unary Positive a
- (unary) -a Unary Negation a with opposite sign
* * a ** b Exponentiation a raised to the power of b
* a * b Multiplication Product of a and b
/ a/ b Division Quotient when a is divided by b.
The result always has type float.
% a%$b Modulo Remainder when a is divided
by b
// a // b Floor Division (or Quotient when a is divided by b,
Integer Division) rounded to the next smallest
whole number
+ (binary) a + b Addition Sum of a and b
| - (binary) a - b Subtraction b subtracted from a

Operators and precedence

When more than one operator appears in an expression,
the order of evaluation depends on the rules of
precedence (mnemonic: PEMDAS).

Use parentheses to make it obvious!
The + operator performs concatenation in strings.

The * operator also works on strings; it performs
repetition. For example, 'Ah'*3 is 'AhAhAh'.

It is a good idea to add notes to a program to explain in
natural language what the program is doing. These notes
are called comments, and they start with the # symbol.

https://en.wikipedia.org/wiki/Order_of_operations#Mnemonics

Calling functions

In the context of programming, a function is a named
sequence of statements that performs a computation.

We'll see how to define functions later in the course.
Functions are called (or invoked) by name:

>>> print (10*t, "km")
30 km

The name of the function is print.

The expressions Iin parentheses are called the
arguments of the function. There are two, in this case.

A function “takes” zero or more arguments and “returns”
a result and/or produces some effect (such as printing
something or storing something).

Math functions

Python has a math module that provides most of the
familiar mathematical functions.

A module is a Python file that defines a collection of
functions and objects.

Before using a module, you must import it:

>>> import math

To access one of the functions, specify the name of the
module and the name of the function, separated by a dot.

>>> degrees 45

>>> radians degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)

0.707106781187

Receiving input from the console

 The input function is used to get input from the console.

It has an optional argument called the prompt and returns
a string.

>>> name = 1input ("What's your name? ")
What's your name? tim

>>> name

'"tim'

» To get other types of values, you must convert!

>> age = 1nt (input ("Age? "))

Age? 22
>>> age
22

>>> type (age)
<class 'int'>

Sending output to the console

To output text to the screen, use the print function:
print ("Hello World")

To write multiple lines, add the ‘\n’ character:

print ("Hello World\nThis is a message")

To print multiple values (separated by blanks):

print ("speed =", v)

The print function has some optional keyword arguments:
print (..., sep=' ',end='\n',file=sys.stdout, flush=False)

Use sep= and end= to change how arguments are
separated and terminated in the output.

Use file= to send output to a different stream (e.q. file).

>>> fh = open ("data.txt", "w")
>>> print ("Some text", file=fh)
>>> fh.close ()

