Network Physical Layer

Redes de Comunicações I

Licenciatura em Engenharia de Computadores e Informática DETI-UA

TCP/IP Reference Model

Guided/Unguided Transmission Systems

Microwave link

Free Space Optics (FSO)

Directional LTE

- A transmission system can be classified as Guided or Unguided.
- In Guided systems, a signal travels through a bounding physical medium.
 - Copper cable, Optical fibre, ...
- In Unguided media, a signal travels through a boundless medium
 - Air, Water, Vacuum, ...
 - Can be directional or omni-directional.
 - In directional configuration, the source emits a focused beam in a particular direction.
 - The receiver should be aligned for receiving the signals.
 - In omni-directional configuration, the source emits equally in all directions.

universidade de aveiro

Omnidirectional LTE 802.11 Omnidirectional Paulo Salvador (salvador@ua.pt)

3

Electromagnetic Spectrum

 For radio signals the antenna transmits a sinusoidal signal ("carrier") that radiates in air/space.

Radio/Microwave Spectrum (3KHz-300GHZ)

Portugal (ANACOM)

- https://www.anacom.pt/render.j sp?categoryId=150422
- UK (OFCOM)
 - https://www.ofcom.org.uk/spectr um/information/uk-fat

• USA (FCC)

 https://www.fcc.gov/engineering -technology/policy-and-rules-div ision/general/radio-spectrum-all ocation

AP Placement and Channel Allocation

 802.11n or 802.11ac 5GHz deployment does not have the overlap or collision domain issues of 2.4GHz.

Usage of Spectrum Analysis

universidade de aveiro

Analogue-Digital Conversion

- The digital transmission of analogue signals requires:
 - An ADC in the source, and
 - A DAC in the destination.
- ADC (Analogue to Digital Conversion)
 - Sampling
 - Quantization and Encoding
- DAC (Digital to Analogue Conversion)
 - Signal reconstruction

Sampling

- The sampling process, measures and quantifies the analogue signal at equally space time intervals.
- The sampling process must be able to capture the main characteristics of the original analogue signal.
- The sampling rate determines the amount of information that its transferred to the digital signal.

Sampling Theorem

- To reconstruct a signal from the samples, the sampling frequency must be high enough to capture the relevant signal information (frequency components).
 - Sampling frequency is the number of samples per second (f_s) .
- For a signal where the highest (relevant) frequency is f_m , the sampling frequency (f_s) must be higher than two times f_m
 - $f_s > 2 * f_m <=> f_m < f_s / 2$
 - $f_s / 2$ is called the **Nyquist frequency**.
 - $2 * f_m$ is called the **Nyquist rate**.

Signal Quantization and Encoding

- Each sampled value must be "rounded" to the nearest member of a set of discrete values.
- The resulting value is then encoded into a binary format.

Pulse Code Modulation (PCM)

 All mechanisms of an ADC can be implemented using a PCM encoder.

Digital Transmission

- Can be synchronous or asynchronous.
 - Synchronous Transmission data is transferred in the form of frames.
 - Asynchronous Transmission data is transmitted 1 bit or byte at a time.
- Synchronous Transmission requires a clock signal between the sender and receiver.
- Asynchronous Transmission sender and receiver does not require a clock signal, but data blocks must have a parity bit attached to it which indicates the start (start bit) of the new byte.
 - And, an optional stop bit.

Line Coding (1)

- Line Coding converts a binary sequence into a digital signal
- Sender then uses the digital signal to modulate transmitting signal in a way that the receiver can recognize.
- Line Coding can be done bit a bit, or in block of several bits (symbol).
- There are several (bit a bit) Line Codes:

Line Coding (2)

• mB/nB Encoding

- Symbols of m bits are coded as line symbols of n bits.
- Each valid line symbols has at least two 1s.

Bits	Symbol	Bits	Symbol
0000	11110	IDLE	11111
0001	01001	J	11000
0010	10100	к	10001
0011	10101	т	01101
0100	01010	R	00111
0101	01011	s	11001
0110	01110	QUIET	00000
0111	01111	HALT	00100
1000	10010		
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

4B/5B Code

universidade de aveiro

Paulo Salvador (salvador@ua.pt)

15

16

Modulation (2)

Quadrature Amplitude Modulation (QAM)

- Uses 2-Dimensional signalling
 - Quadrature
 Gine wave + Cosine wave

•
$$s(t) = I(t)cos(2\pi f_0 t) - Q(t)sin(2\pi f_0 t)$$

