
Sistemas de Operação / Fundamentos de
Sistemas Operativos
(Ano letivo de 2024-2025)

Guiões das aulas práticas

script #01 Implementing a simple linked-list from scratch

Summary

• Revision of C/C++ programming

• Implementing a simple linked-list in pure C/C++

Environment

As you should already know, all practical work will be carry out in a Linux environment, with programs
being developed in C/C++. Thus, first of all, you must have a Linux distribution installed in your com-
puter. In terms of packages, at least the following or equivalent ones will be necessary: build-essential,
glibc-doc, manpages-dev, doxygen. If you have Ubuntu, you can execute in the command line

sudo apt install build-essential glibc-doc manpages-dev doxygen

Introduction

The idea is to implement a simple linked list from scratch, without relying on supporting libraries, like the
STL library. Typically, a simple linked list is built based on a data structure, called a node, containing
the data itself and a pointer to the next node, that allows to build the list. Often, a proper data structure
is also defined to hold the data. In the following 2 exercises, the data is composed of two fields:

• a 32-bit unsigned integer, representing a student number;

• a pointer to a (dynamically allocated) string representing the student’s name. Recall that, in the C
programming language, a string is implemented as a memory address of a zero-terminated sequence
of characters.

In the first exercise, the list is implemented as a library, where every manipulation function has a parame-
ter (a pointer to a node) indicating the list to be processed. In the second exercise, the list is implemented
as a singleton, meaning that the manipulation functions do not have a parameter indicating the list to
be processed, as there are only one.

The header files in both exercises have comments aimed to doxygen, a tool that allows you to produce
HTML documentation from them. File Doxyfile is configured for that purpose. To generate and visualize
that documentation, proceed as follows:

1. In the exercise folder, run command doxygen. Folder html will be created.

2. Open the index.html page inside the html folder. A simple way of doing that is executing command
firefox html/index.html &>/dev/null (you might want to replace firefox with your favourite
browser).

3. In the browser, a page titled LinkedList appears. By pressing tab File, a list of files appears. Select
the only one there (linked-list.h) and enjoy.



Exercises

Exercise 1 Implementing a linked-list as a library

The objective of this exercise is to implement a simple linked-list in C++, as a library of functions. Folder
as-library provides the base code for the implementation.

File linked-list.h, the header file, plays the following roles:

• defines datatype Student, which represents the data to be stored in the list,

• defines datatype SllNode, which represents the node used to implement the list;

• declares the signatures of the list manipulation functions.

File linked-list.cpp contains the skeleton of the manipulation functions. File main.cpp is the main
program which implements a menu driven application. Read these files carefully and try to answer to the
following questions.

(a) What is the purpose of the pattern #ifndef #define in linked-list.h file?

(b) All of the linked-list module functions have an SllNode* first argument. Why?

(c) Complete both the linked-list module functions and the main program. Follow an incremental ap-
proach, choosing just a few functions, implementing them, and testing them, before tackling the next
ones. A good starting point would be to choose the insert and print functions. Leave function sllLoad

for last. For your tests, you may need to edit the main program.

Exercise 2 Implementing a linked-list as a singleton

The objective of this exercise is to implement a singleton simple linked-list in C++. Folder as-singleton
provides the base code for the implementation.

File linked-list.h, the header file, just declares the signatures of the list manipulation functions. File
linked-list.cpp plays the following roles:

• defines datatype Student, which represents the data to be stored in the list;

• defines datatype SllNode, which represents the node used to implement the list;

• defines a module variable (list), which is the head of the unique linked list;

• contains the skeleton of the manipulation functions.

Read these files carefully and try to answer to the following questions.

(a) What is the purpose of the pattern #ifndef #define in linked-list.h file?

(b) The support data structures (Student and SllNode) are declared in the .cpp file, not in the header
file. Why?

(c) Variable list is defined as static. What is the consequence of this?

(d) Complete both the linked-list module functions and the main program. Follow an incremental ap-
proach, choosing just a few functions, implementing them, and testing them, before tackling the next
ones. A good starting point would be to choose the insert and print functions. Leave function sllLoad

for last. For your tests, you may need to edit the main program.


