

Application Requirements and Networks

Redes de Comunicações 1

Licenciatura em Engenharia de Computadores e Informática DETI-UA, 2021/2022

Applications

- Elastics: use the bandwith that is available (eg: file transfer, e-mail, ...)
- Inelastics: need a minimum bandwidth (eg: voice, video, multimedia...)

Voice

- Inelastic
- Runs through UDP protocol
 No guarantees of delivery and in order
- Can tolerate losses
- Does not tolerate delays, delays variation, and low bandwidths

Voice call

- No changes
- 10% packet loss
- 30% packet loss
- Limited bandwidth to 1.5 KB 49
- Limited bandwidth to 1 KB

Videoconference

• Inelastic

Runs through Real-time protocol, through UDP protocol

No guarantees of delivery and in order

- Cannot tolerate losses or low bandwidths
- Can tolerate delays or delays variation if buffering is applied

Videoconference

1% packet loss

5% packet loss

Recorded audio

- Inelastic
- Can run through TCP or UDP
- Can tolerate losses
- Does not tolerate delays, delays variation, and low bandwidths

Recorded audio

• Music with bitrate of 128 Kbps

15

- No changes
- 5% packet loss 🛛 🐠
- 15% packet loss 0 🍕
- Delay of 200 ms
- Limited bandwidth to 10 KB 49

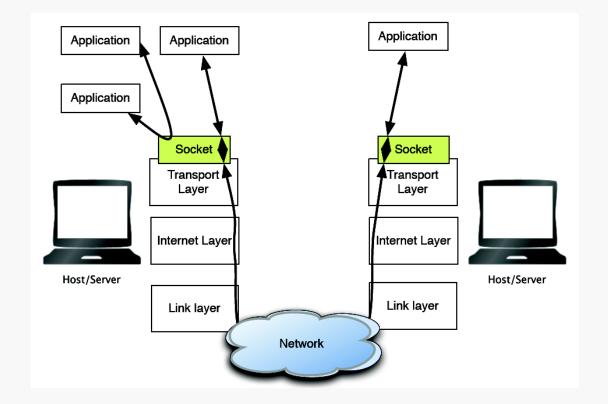
File Transfer

- Elastic
- Rus through TCP, with guarateed delivery in order
- File size 66.1 Mbits
- Time transfer 2 mins, with bandwidth 900 KB/s

File transfer

Delay (ms)	%Losses	%Duplic	Bandwidth (B/s)	Transmission time (min)
50			150 000	12
100			50 000	36
	5		150 000	12
	15		1 500	Long time
		10	900 000	2
		50	790 000	5

How to connect Machines? Sockets and Network Programming


Sockets (1)

Inter-process communication mechanism

Either local or remote processes

Provide an abstraction for processes to exchanging information

Follows a client/server paradigm.

Sockets (2)

• A Socket is identified by

Family: AF_INET (IPv4), AF_INET6 (IPv6) and many other less common.

Defines the address structure.

Defines also the communications layer (e.g. IP version).

Type: Determines what transport protocol is used.

UDP – Connectionless (SOCK_DGRAM).

- TCP Connection oriented (SOCK_STREAM).
- RAW Direct access to a layer of the stack (SOCK_RAW).
- build different protocols, ping command, etc.

Address: local address (IP or path)

Also remote address if connection oriented

Port: Local port 0-65535

Also remote port if connection oriented

Restriction

I socket per Address, per Port, per Protocol, per Family, per Host

Sockets (3)

• AF_INET/AF_INET6 families

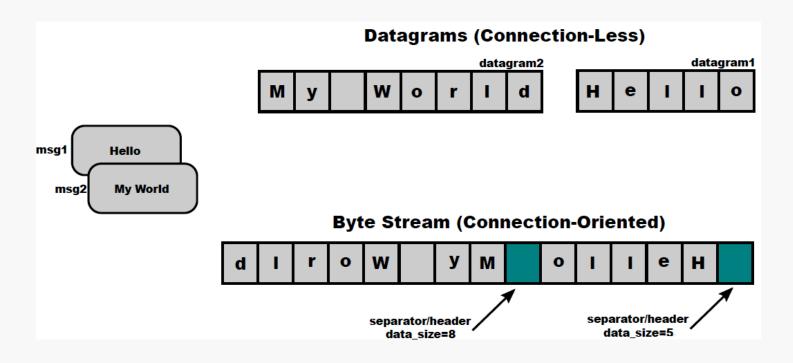
Allows communication between processes on any IP/IPv6 enabled machine.

Endpoints can be on local or remote machines

127.0.0.1 or ::1 for the localhost

• A Socket must be "Bound" to a local IP/PORT

Sockets can be bound to a specific address or to any address

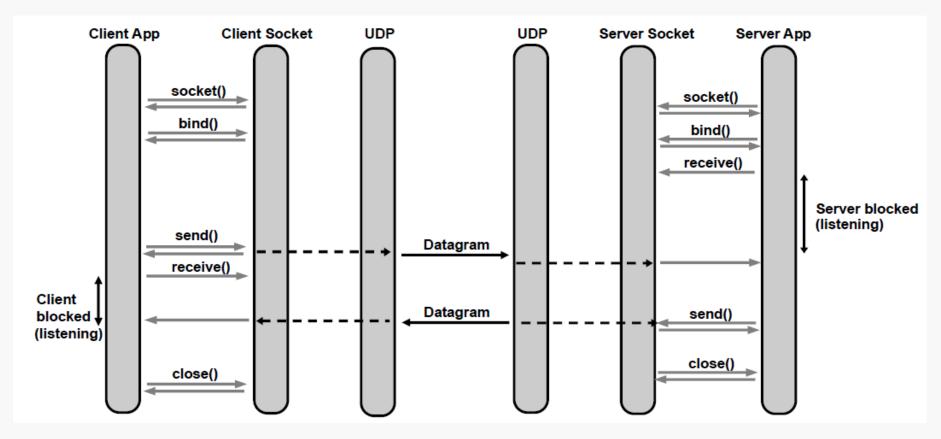

e.g. 192.168.0.1 (only listens in this address)

e.g. 0.0.0.0 (listens in all active addresses and broadcast)

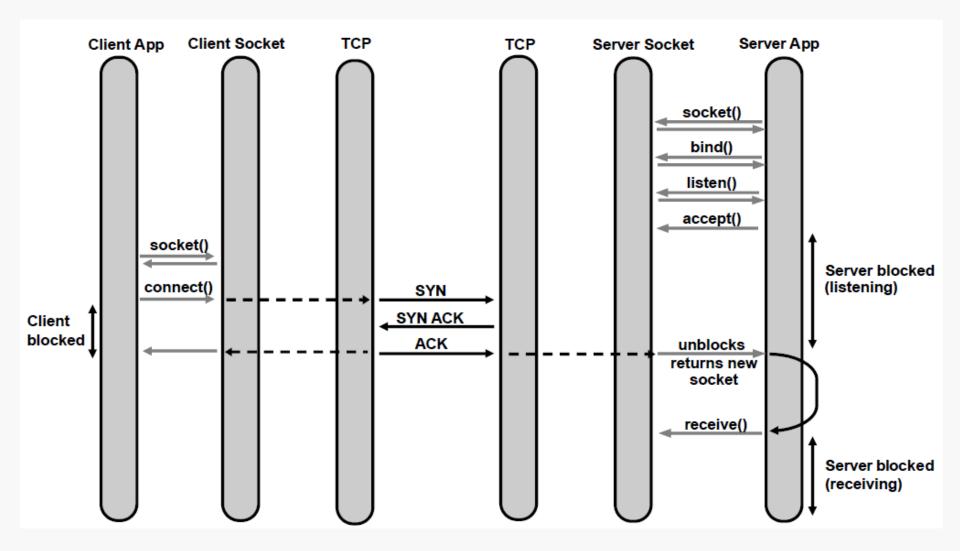
bind() method can be used to associate a Socket to a local IP/Port.

Byte Stream vs. Datagrams

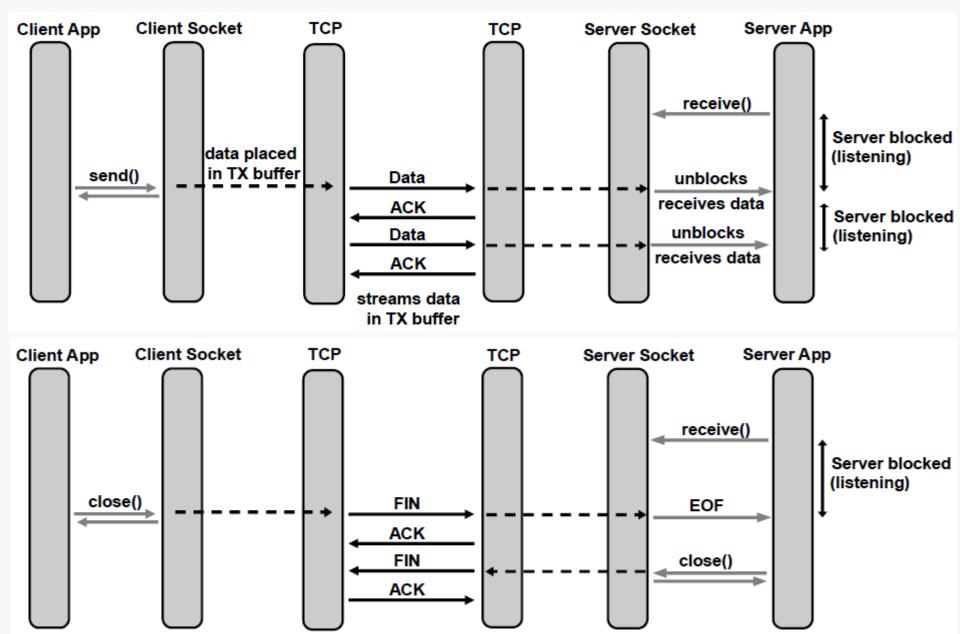
- TCP needs application-level message separators (headers).
 - Must contain size information of each "independent" data chunk in the bytestream.



Socket IO / Blocking


Socket Operations are Blocking

- They block until:
 - Packet is fully sent,
 - Client is accepted,
 - Packet is received,
 - ⊸Etc…
- Can be set to non-blocking.
 - Program flow must take that in consideration.


Connection-Less

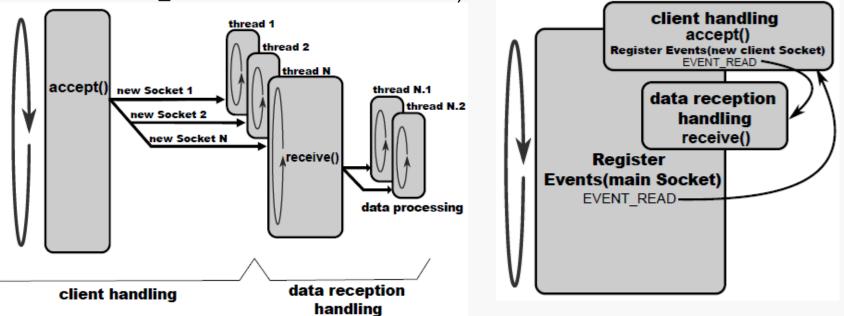
Connection-Oriented (1)

Connection-Oriented (2)

Non-Blocking IO

Solutions for Socket Operations Blocking

Threads


-Multiple parallel processes can be used to process simultaneous connections.

-Most solutions used (and still use) IO operations with multiple threads.

Selector

Socket is set to non-blocking.

Actions are performed upon the detection of predefined socket events (e.g., EVENT_READ – data available to read).

20

Textual vs. Binary Structure

• Textual

Pure text (format based on CSV, TSV, newline, ...), HTML, JSON, XML

Larger messages and higher processing times.

Higher Bandwidth, CPU and Memory requirements.

Constrains utilization in high performance applications.

Binary Structure

Defined by the protocol stack (definition of formats and methodologies).

Faster at all levels.

Little/Big Endian concerns.

VS.

Must depend on platform and/or be defined by the protocol stack.

Message data has **42 bytes** {''msg_id'':21654,

"values":[12, 45, 109]

Structure format

- uint16 msg_id
- uint8 num_values
- uint8 values[]

Message data has **6 bytes**

- 0x5496
- 0x03
- 0x0C 0x2D 0x6D

21