
Introduction to Digital Systems, P8 2022-2023

 1

Fundamental Combinatorial Blocks

Topics
 Arithmetic and comparator circuits
 Behavioral simulation

Problems

Part I

In this part, a 4-bit adder/subtractor circuit will be built, from cascaded 1-bit full adders.

Assume a two’s complement representation.

1. [Paper and pencil] Write the Boolean equations and draw the logic diagram, based on
elementary logic gates, of a 1-bit full adder with the interface shown in Fig.1.

Fig. 1 – Full adder interface.

2. [Paper and pencil] Create a 4-bit adder/subtractor circuit using the 1-bit full adder as a
building block. Fig. 2 shows its interface. Draw the logic diagram of the 4-bit adder/subtractor
based on 1-bit full adder modules.

Fig. 2 – 4-bit adder/subtractor interface.

3. [Quartus Prime] Using the Quartus Prime software, create a new project named
“AddSubDemo”, with a top-level entity with the same name as the project. Create a new file
for a schematic diagram called “FullAdder.bdf” to implement the full adder based on logic
gates, accordingly to the logic diagram of the point 1. Create a symbol for the “FullAdder”
module, so that it can be used in a schematic diagram and save it with the name
“FullAdder.bsf”.

Introduction to Digital Systems, P8 2022-2023

 2

4. [Quartus Prime] Create a new file for a schematic diagram called “AddSub4.bdf” to
implement the 4-bit adder/subtractor, accordingly to the logic diagram of the point 2. Create a
symbol for the “AddSub4” module, so that it can be used in a schematic diagram, and save it
with the name “AddSub4.bsf”.

5. [Quartus Prime] Create a new file for a schematic diagram called “AddSubDemo.bdf” that
will act as the top-level of the project, instantiate the 4 bit adder/subtractor built in the previous
point and connect it to input and output ports.

6. [Quartus Prime] Perform the behavioural simulation of the adder/subtractor, applying input
stimulus to evaluate conveniently its operation.

7. [Paper and pencil] Include in the diagram of point 2 the required logic to detect overflow
conditions for both unsigned and signed operands/results.

8. [Quartus Prime] Add the overflow detection logic to the diagram drawn in point 4 and
validate it adequately through simulation.

Part II

In this part a comparator circuit for two 4-bit unsigned words, A and B, will be designed and
validated. The solution should be based on an iterative approach, consisting of a cascade of
elementary blocks of comparison (also called 1-bit comparator cells). Each of these cells, in
addition to the 1-bit inputs to be compared (ai and bi), also includes inputs to receive
information from upstream comparator cells and, of course, outputs indicating the result of the
comparison. Fig. 3 shows the interface of the 1-bit comparator cell. The comparison should
start from the least significant bits.

Figure 3 - Elementary comparison block.

1. [Paper and pencil] Start by manually exercising the comparison process with several
comparison cases for 4-bit words and draw the block diagram of the 4-bit comparator based on
1-bit comparison cells. What must be the inputs of the first comparison cell?

2. [Paper and pencil] To proceed with implementation complete the following logical
equations and draw the respective logic diagram.

ai bi

A B

A B

A B

A B

A B

A B

xin

yin

zin

xout

yout

zout

Single
Bit

Comp

Introduction to Digital Systems, P8 2022-2023

 3

 𝑦௨௧ ൌ ሺ𝑎 ⊕ 𝑏ሻᇱ 𝑦
𝑥௨௧ ൌ 𝑎 𝑏

ᇱ ⋯
𝑧௨௧ ൌ 𝑎

ᇱ 𝑏 ⋯

3. [Quartus Prime] Using the Quartus Prime software, create a new project named
“CmpDemo”, with a top-level entity with the same name as the project. Create a new file for a
schematic diagram called “Cmp1bit.bdf” to implement the 1-bit comparator cell based on logic
gates, accordingly to the logic diagram of the previous point. Create a symbol for the
“Cmp1bit” module, so that it can be used in a schematic diagram, and save it with the name
“Cmp1bit.bsf”.

4. [Quartus Prime] Create a new file for a schematic diagram called “Cmp4bit.bdf” to
implement the 4-bit comparator using the 1-bit cell comparator as a building block, accordingly
to the block diagram created in point 1. Create a symbol for the “Cmp4bit” module, so that it
can be used in a schematic diagram, and save it with the name “Cmp4bit.bsf”.

5. [Quartus Prime] Create a new file for a schematic diagram called “CmpDemo.bdf” that will
act as the top-level of the project, instantiate the 4 bit comparator built in the previous point
and connect it to input and output ports.

6. [Quartus Prime] Perform the behavioural simulation of the comparator, applying input
stimulus to evaluate conveniently its operation.

7. [Homework after the class] Repeat this part for signed numbers.

8. [Homework after the class] How do you modify the equations of the 1-bit comparison cell
if the comparison starts from the most significant bits?

