
Fundamentos de Programação

António J. R. Neves
João Rodrigues

Departamento de Electrónica, Telecomunicações e Informática
Universidade de Aveiro

Summary

• File input/output
• File paths and directories
• Command line arguments
• Exceptions
• Assertions

Video clip about file I/O

https://youtu.be/s9Dmf1wRps0

Text Files

• Most of the programs we have seen so far are transient in
the sense that they run for a short time, take input and
produce output, but when they end, everything disappears.

• One of the simplest ways for programs to maintain their data
is by reading and writing text files.

• A text file is a sequence of characters stored on a persistent
medium like a hard drive, flash memory, or CD-ROM.

• Characters are encoded in bytes according to a standard
coding table such as ASCII, Latin-1 or UTF-8, for instance.

Opening and closing files

• We must prepare a file before reading or writing. This is
called opening the file.

• The built-in function open takes the name of the file and
returns a file object that we can use to access it.
fileobj = open(file_name, 'r') # open for reading
fileobj = open(file_name, 'w') # open for writing

• More modes: 'r', 'w', 'a', 'r+', 'w+', 'a+', 'rb', ...
• After using the file, remember to close it.

fileobj.close()

• Better: use with statement. It automatically closes files.
with open(file_name, mode) as fileobj:
 statements to read/write fileobj
fileobj.close() not required!

https://docs.python.org/3/library/functions.html#open

Text versus binary mode

● Normally, files are opened in text mode. This means:
● You write/read strings of characters (type str).

● Newline characters ('\n') are converted to/from platform-specific line
endings: LF in Unix, CRLF in Windows. (About CRLF in stackoverflow.)

● Characters are encoded/decoded: each character is converted to/from
one or more bytes. (For example, 'á' → 195, 161 in UTF-8).

● You may specify the encoding with the optional encoding= argument.

fileobj = open(file_name,'r', encoding='utf-8')

● For files that don’t contain text, you should use 'wb' or
'rb' to open in binary mode. This means:

● You write/read strings of bytes (type bytes, not str).

● No conversions occur.

https://stackoverflow.com/a/3098328/4244835

Reading a file

• We can use a for loop to read a file line by line.
 fin = open('words.txt')

for line in fin: # for each line from the file
 print(repr(line)) # do something with it
fin.close()

• Another way is using the readline method.
while True:
 line = fin.readline() # returns line to the end
 if line == "": break # empty means end-of-file
 print(repr(line))

• We can also read the entire file as string.
text = fin.read() # read as much as possible (up to EOF)

• Or read at most N characters.
str = fin.read(10) # read upto 10 chars (empty means EOF)

Write a file (1)

• To write to a file, open it with mode 'w' (or 'a').
fout = open('output.txt', 'w', encoding='utf-8')

• Opening it in 'w' mode creates a new file or truncates
an existing one, i.e. it deletes the old data and starts
from scratch. The 'a' mode does not truncate, it
appends to the end of the file.

• The write method puts data into the file.
line1 = "To be or not to be,\n"
fout.write(line1)

• Again, the file object keeps track of where it is, so if you
call write again, it adds the new data to the end.
line2 = "that is the question.\n"
fout.write(line2)

Write a file (2)

• The argument of write has to be a string, so we have to
convert other types of values.
x = 0.75
fout.write('X: ' + str(x))

• Or use the string format method.
fout.write('{} costs {:.2f}€.'.format('tea', x))

• You may also use print with the file= argument.
print('X:', x, file=fout)
print('{} costs {:.2f}€.'.format('tea', x), file=fout)

• When you are done writing, remember to close the file!
fout.close() # OR use the with statement

Moving the file object’s position

• We generally read and write sequentially, from start to end.
• But sometimes we need to "jump" around.
• The tell() method tells you the current position within

the file.
• The seek(offset) method changes the current file

position to offset bytes from the start. (An optional
argument can specify a different reference point).
a0 = f.readline() # read a line
pos = f.tell() # store position
a1 = f.readline() # read second line
f.seek(pos) # return to stored position
a2 = f.readline() # read second line again (a2==a1)

Filenames and paths

• The os module provides functions for working with files and
directories (os stands for “operating system”).
os.getcwd() returns the name of the current directory.

• A string that identifies a file is called a path.
os.getcwd() #-> '/home/jmr/FP'

• An absolute path starts with / (the topmost directory).
• A relative path starts from the current directory.

'aula06/aula06.pdf'

• You may find the absolute path to a file:
os.path.abspath('aula06/aula06.pdf')
 #-> '/home/jmr/FP/aula06/aula06.pdf'

File properties and listing directories

● There are functions to check existence and type of files.
● os.path.exists(path) checks whether a file exists.

● os.path.isdir(path) checks whether a filename is a directory.

● os.path.isfile(path) checks whether it’s a regular file.

● And a function to get the contents of a directory.
● os.listdir() returns a list of the files (and other directories) in the given

directory.

Example

• The method walk() generates the file names in a directory
tree by walking the tree either top-down or bottom-up.

import os
for root, dirs, files in os.walk(".", topdown=False):
 for name in files:
 print(os.path.join(root, name))
 for name in dirs:
 print(os.path.join(root, name))

Command Line Arguments

• The sys module provides access to any command-line
arguments via the sys.argv variable.
• sys.argv is the list of command-line arguments;

• len(sys.argv) is the number of command-line arguments;

• sys.argv[0] is the program (script) name.

import sys
print('Number of args:', len(sys.argv), 'arguments.')
print('Argument List:', sys.argv)

• Run above script as follows:
python3 test.py arg1 arg2 arg3

• Produces:
Number of arguments: 4 arguments.
Argument List: ['test.py', 'arg1', 'arg2', 'arg3']

• Explore getopt module

Exceptions

• Python provides an important feature to handle any
unexpected events in your program: exceptions.

• You’ve seen exceptions before.
int("one") #-> ValueError: invalid literal for int()
open("foo") #-> FileNotFoundError: No such file…

• When Python encounters a situation that it cannot cope with,
it raises an exception.

• That interrupts the normal flow of execution: the current
function is interrupted, then the one that called it, etc., until
the main program itself is interrupted.

• Information about the event is transmitted all the way
through in an exception object.

Handling exceptions

• You can intercept selected exceptions and resume normal
execution with the try statement.

• Example: handle errors accessing files:
try:
 fh = open("testfile", "r")
 content = fh.read()
except IOError:
 print("Error: could not open file or read data")
else:
 print("This executes iff no exception occurred")
 fh.close()

• The except clause may name multiple exceptions.
• An except clause naming no exception, catches all types.

Exception information

• An exception can have an argument, which is a value
that gives additional information about the problem.
def convert(var):
 try:
 return int(var)
 except ValueError as e:
 print("Not numeric:", e)
 return None

m = convert("123")
n = convert("xyz") Play

https://pythontutor.com/visualize.html#code=def%20convert%28var%29%3A%0A%20%20%20%20try%3A%0A%20%20%20%20%20%20%20%20return%20int%28var%29%0A%20%20%20%20except%20ValueError%20as%20e%3A%0A%20%20%20%20%20%20%20%20print%28%22Not%20numeric%3A%22,%20e%29%0A%20%20%20%20%20%20%20%20return%20None%0A%0Am%20%3D%20convert%28%22123%22%29%0An%20%3D%20convert%28%22xyz%22%29%0A&cumulative=false&curInstr=14&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Raising exceptions

• We can raise exceptions (of any type) by using the raise
statement.
def checkLevel(level):
 if level < 1:
 raise Exception(f"level={level} is too low!")
 # code here is not executed if we raise the exception
 return level

try:
 v = checkLevel(-1)
 print("level = ", v)
except Exception as e:
 print("Error:", e) Play

https://pythontutor.com/visualize.html#code=def%20checkLevel%28%20level%20%29%3A%0A%20%20%20%20if%20level%20%3C%201%3A%0A%20%20%20%20%20%20%20%20raise%20Exception%28f%22level%3D%7Blevel%7D%20is%20too%20low!%22%29%0A%20%20%20%20%23%20code%20here%20is%20not%20executed%20if%20we%20raise%20the%20exception%0A%20%20%20%20return%20level%0A%0Atry%3A%0A%20%20%20%20v%20%3D%20checkLevel%28-1%29%0A%20%20%20%20print%28%22level%20%3D%20%22,%20v%29%0Aexcept%20Exception%20as%20e%3A%0A%20%20%20%20print%28%22Error%3A%22,%20e%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Assertions

• An assertion is a condition that the programmer knows (or
believes) to be true at some point in a program.

• To check an assertion, use assert condition.
• This evaluates the condition and, if false, raises an exception

of type AssertionError.
• If that happens, the programmer learns that there is a bug.

He/she must find out why that assertion failed, and fix the
problem.

• If users are confident that the program is correct, they can
turn off assertion checking when running program:
python3 -O prog.py.

Assertions: when to use?

• Assertions at the start of a function, to check if arguments
are within the domain of the function. (Check preconditions.)

• Assertion at the end of a function, to check postconditions.
• Assertions after calling functions for testing results.

