/* quartus_eda --gen_testbench --tool=modelsim_oem --format=vhdl --write_settings_files=off LogicDemo -c LogicTop --vector_source="/home/tiagorg/repos/uaveiro-leci/1ano/2semestre/lsd/pratica01/part3/LogicUnit.vwf" --testbench_file="/home/tiagorg/repos/uaveiro-leci/1ano/2semestre/lsd/pratica01/part3/simulation/qsim/LogicUnit.vwf.vht" quartus_eda --gen_testbench --tool=modelsim_oem --format=vhdl --write_settings_files=off LogicDemo -c LogicTop --vector_source="/home/tiagorg/repos/uaveiro-leci/1ano/2semestre/lsd/pratica01/part3/LogicUnit.vwf" --testbench_file="/home/tiagorg/repos/uaveiro-leci/1ano/2semestre/lsd/pratica01/part3/simulation/qsim/LogicUnit.vwf.vht" quartus_eda --write_settings_files=off --simulation --functional=on --flatten_buses=off --tool=modelsim_oem --format=vhdl --output_directory="/home/tiagorg/repos/uaveiro-leci/1ano/2semestre/lsd/pratica01/part3/simulation/qsim/" LogicDemo -c LogicTop quartus_eda --write_settings_files=off --simulation --functional=off --flatten_buses=off --timescale=1ps --tool=modelsim_oem --format=vhdl --output_directory="/home/tiagorg/repos/uaveiro-leci/1ano/2semestre/lsd/pratica01/part3/simulation/qsim/" LogicDemo -c LogicTop onerror {exit -code 1} vlib work vcom -work work LogicTop.vho vcom -work work LogicUnit.vwf.vht vsim -c -t 1ps -L cycloneive -L altera -L altera_mf -L 220model -L sgate -L altera_lnsim work.LogicTop_vhd_vec_tst vcd file -direction LogicDemo.msim.vcd vcd add -internal LogicTop_vhd_vec_tst/* vcd add -internal LogicTop_vhd_vec_tst/i1/* proc simTimestamp {} { echo "Simulation time: $::now ps" if { [string equal running [runStatus]] } { after 2500 simTimestamp } } after 2500 simTimestamp run -all quit -f onerror {exit -code 1} vlib work vcom -work work LogicTop.vho vcom -work work LogicUnit.vwf.vht vsim -novopt -c -t 1ps -sdfmax LogicTop_vhd_vec_tst/i1=LogicTop_vhd.sdo -L cycloneive -L altera -L altera_mf -L 220model -L sgate -L altera_lnsim work.LogicTop_vhd_vec_tst vcd file -direction LogicDemo.msim.vcd vcd add -internal LogicTop_vhd_vec_tst/* vcd add -internal LogicTop_vhd_vec_tst/i1/* proc simTimestamp {} { echo "Simulation time: $::now ps" if { [string equal running [runStatus]] } { after 2500 simTimestamp } } after 2500 simTimestamp run -all quit -f vhdl */ /* WARNING: Do NOT edit the input and output ports in this file in a text editor if you plan to continue editing the block that represents it in the Block Editor! File corruption is VERY likely to occur. */ /* Copyright (C) 2020 Intel Corporation. All rights reserved. Your use of Intel Corporation's design tools, logic functions and other software and tools, and any partner logic functions, and any output files from any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Intel Program License Subscription Agreement, the Intel Quartus Prime License Agreement, the Intel FPGA IP License Agreement, or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Intel and sold by Intel or its authorized distributors. Please refer to the applicable agreement for further details, at https://fpgasoftware.intel.com/eula. */ HEADER { VERSION = 1; TIME_UNIT = ns; DATA_OFFSET = 0.0; DATA_DURATION = 1000.0; SIMULATION_TIME = 0.0; GRID_PHASE = 0.0; GRID_PERIOD = 10.0; GRID_DUTY_CYCLE = 50; } SIGNAL("LEDR") { VALUE_TYPE = NINE_LEVEL_BIT; SIGNAL_TYPE = BUS; WIDTH = 6; LSB_INDEX = 0; DIRECTION = OUTPUT; PARENT = ""; } SIGNAL("LEDR[5]") { VALUE_TYPE = NINE_LEVEL_BIT; SIGNAL_TYPE = SINGLE_BIT; WIDTH = 1; LSB_INDEX = -1; DIRECTION = OUTPUT; PARENT = "LEDR"; } SIGNAL("LEDR[4]") { VALUE_TYPE = NINE_LEVEL_BIT; SIGNAL_TYPE = SINGLE_BIT; WIDTH = 1; LSB_INDEX = -1; DIRECTION = OUTPUT; PARENT = "LEDR"; } SIGNAL("LEDR[3]") { VALUE_TYPE = NINE_LEVEL_BIT; SIGNAL_TYPE = SINGLE_BIT; WIDTH = 1; LSB_INDEX = -1; DIRECTION = OUTPUT; PARENT = "LEDR"; } SIGNAL("LEDR[2]") { VALUE_TYPE = NINE_LEVEL_BIT; SIGNAL_TYPE = SINGLE_BIT; WIDTH = 1; LSB_INDEX = -1; DIRECTION = OUTPUT; PARENT = "LEDR"; } SIGNAL("LEDR[1]") { VALUE_TYPE = NINE_LEVEL_BIT; SIGNAL_TYPE = SINGLE_BIT; WIDTH = 1; LSB_INDEX = -1; DIRECTION = OUTPUT; PARENT = "LEDR"; } SIGNAL("LEDR[0]") { VALUE_TYPE = NINE_LEVEL_BIT; SIGNAL_TYPE = SINGLE_BIT; WIDTH = 1; LSB_INDEX = -1; DIRECTION = OUTPUT; PARENT = "LEDR"; } SIGNAL("SW") { VALUE_TYPE = NINE_LEVEL_BIT; SIGNAL_TYPE = BUS; WIDTH = 2; LSB_INDEX = 0; DIRECTION = INPUT; PARENT = ""; } SIGNAL("SW[1]") { VALUE_TYPE = NINE_LEVEL_BIT; SIGNAL_TYPE = SINGLE_BIT; WIDTH = 1; LSB_INDEX = -1; DIRECTION = INPUT; PARENT = "SW"; } SIGNAL("SW[0]") { VALUE_TYPE = NINE_LEVEL_BIT; SIGNAL_TYPE = SINGLE_BIT; WIDTH = 1; LSB_INDEX = -1; DIRECTION = INPUT; PARENT = "SW"; } TRANSITION_LIST("LEDR[5]") { NODE { REPEAT = 1; LEVEL X FOR 1000.0; } } TRANSITION_LIST("LEDR[4]") { NODE { REPEAT = 1; LEVEL X FOR 1000.0; } } TRANSITION_LIST("LEDR[3]") { NODE { REPEAT = 1; LEVEL X FOR 1000.0; } } TRANSITION_LIST("LEDR[2]") { NODE { REPEAT = 1; LEVEL X FOR 1000.0; } } TRANSITION_LIST("LEDR[1]") { NODE { REPEAT = 1; LEVEL X FOR 1000.0; } } TRANSITION_LIST("LEDR[0]") { NODE { REPEAT = 1; LEVEL X FOR 1000.0; } } TRANSITION_LIST("SW[1]") { NODE { REPEAT = 1; NODE { REPEAT = 1; LEVEL 0 FOR 400.0; LEVEL 1 FOR 400.0; } LEVEL 0 FOR 200.0; } } TRANSITION_LIST("SW[0]") { NODE { REPEAT = 1; NODE { REPEAT = 2; LEVEL 0 FOR 200.0; LEVEL 1 FOR 200.0; } LEVEL 0 FOR 200.0; } } DISPLAY_LINE { CHANNEL = "SW"; EXPAND_STATUS = EXPANDED; RADIX = Binary; TREE_INDEX = 0; TREE_LEVEL = 0; CHILDREN = 1, 2; } DISPLAY_LINE { CHANNEL = "SW[1]"; EXPAND_STATUS = COLLAPSED; RADIX = Binary; TREE_INDEX = 1; TREE_LEVEL = 1; PARENT = 0; } DISPLAY_LINE { CHANNEL = "SW[0]"; EXPAND_STATUS = COLLAPSED; RADIX = Binary; TREE_INDEX = 2; TREE_LEVEL = 1; PARENT = 0; } DISPLAY_LINE { CHANNEL = "LEDR"; EXPAND_STATUS = EXPANDED; RADIX = Binary; TREE_INDEX = 3; TREE_LEVEL = 0; CHILDREN = 4, 5, 6, 7, 8, 9; } DISPLAY_LINE { CHANNEL = "LEDR[5]"; EXPAND_STATUS = COLLAPSED; RADIX = Binary; TREE_INDEX = 4; TREE_LEVEL = 1; PARENT = 3; } DISPLAY_LINE { CHANNEL = "LEDR[4]"; EXPAND_STATUS = COLLAPSED; RADIX = Binary; TREE_INDEX = 5; TREE_LEVEL = 1; PARENT = 3; } DISPLAY_LINE { CHANNEL = "LEDR[3]"; EXPAND_STATUS = COLLAPSED; RADIX = Binary; TREE_INDEX = 6; TREE_LEVEL = 1; PARENT = 3; } DISPLAY_LINE { CHANNEL = "LEDR[2]"; EXPAND_STATUS = COLLAPSED; RADIX = Binary; TREE_INDEX = 7; TREE_LEVEL = 1; PARENT = 3; } DISPLAY_LINE { CHANNEL = "LEDR[1]"; EXPAND_STATUS = COLLAPSED; RADIX = Binary; TREE_INDEX = 8; TREE_LEVEL = 1; PARENT = 3; } DISPLAY_LINE { CHANNEL = "LEDR[0]"; EXPAND_STATUS = COLLAPSED; RADIX = Binary; TREE_INDEX = 9; TREE_LEVEL = 1; PARENT = 3; } TIME_BAR { TIME = 0; MASTER = TRUE; } ;