
41951- ANÁLISE DE SISTEMAS

AS: course presentation

Ilídio Oliveira

v2024/02/20

Key resources

Web page at Moodle

All learning materials Assignments submission

Syllabus (dossier pedagógico

Subjects covered Grading (and other) rules

Course Calendar

Weekly plan

Análise de Sistemas	
Objetivos	Código: 41951
Objetivos Nesta unidade curricular, os alunos irão familiarizar-se com as disciplinas da análise, modelação e desenho de sistemas, no contexto da engenharia de software.	Docente responsável: Ilídio Fernando de Castro
	Idioma(s) de lecionação:
Resultados de Aprendizagem No final desta unidade curricular, o aluno deve ser capaz de:	Área científica: Informática
Comparar os principais processos de desenvolvimento de sortenaria	Créditos ECTS: 6
 práticas subjacentes. Realizar a análise e especificação de requisitos de um sistema de software e participar de forma crítica na sua validação. Documentar requisitos funcionais e não funcionais numa especificação. 	Carga letiva: TP: 2H/semana PL: 2H/semana
 Aplicar abordagens de especificação por esta utilização); Comunicar uma proposta de arquitetura de software e justificar as decisões com 	
relação aos requisitos. • Criar modelos usando a UML e ferramentas CASE para apoiar a especificação e	
desenvolvimento; • Organizar a resolução de problemas de média dimensão em equipa, aplicando uma metodologia ágil.	

de Castro Oliveir

INTERNACIONAL

COOPERAR

INVESTIGAR

VIVER

ESTUDAR

SOBRE A UA

Mapping AS in the ACM/IEEE curriculum guidelines

ΚΑ/Κυ

MAA.md

MAA.tm

MAA.af

REQ.rfd

REQ.er

REQ.rsd

REQ.rv

REQ

Modeling foundations

Analysis fundamentals

Eliciting requirements

Requirements validation

Requirements analysis and

Requirements fundamentals

Requirements specification and

Types of models

specification

documentation

Title

Software Engineering 2014

Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering

CMP	Computing essentials	152	DES	Software design
CMP.cf	Computer science foundations	120	DES.con	Design concepts
CMP.ct	Construction technologies	20	DES.str	Design strategies
CMP.tl	Construction tools	12	DES.ar	Architectural design
				Human-computer interaction
			DES.hci	design
			DES.dd	Detailed design
			DES.ev	Design evaluation
	Mathematical and			Software verification and
FND	engineering fundamentals	80	VAV	validation
				V&V terminology and
FND.mf	Mathematical foundations	50	VAV.fnd	foundations
	Engineering foundations for			
FND.ef	software	22	VAV.rev	Reviews and static analysis
	Engineering economics for			
FND.ec	software	8	VAV.tst	Testing
			VAV.par	Problem analysis and reporting
PRF	Professional practice	29	PRO	Software process
	Group dynamics and			
PRF.psy	psychology	8	PRO.con	Process concepts
	Communications skills (specific			
PRF.com	to SE)	15	PRO.imp	Process implementation
PRF.pr	Professionalism	6	PRO.pp	Project planning and tracking
				Software configuration
			PRO.cm	management
				Evolution processes and
			PRO.evo	activities
	Software modeling and			
MAA	analysis	28	QUA	Software quality

8

12

8

30

6

10

10

4

QUA.cc

QUA.pca

QUA.pda

SEC.sfd

SEC.net

SEC.dev

SEC

culture

Security

Hours

KA/KU

Title

Software quality concepts and

Computer and network security

Developing secure software

Process assurance

Product assurance

Security fundamentals

Hours

48 3

6 12

10 14

3

37 5 9

18 5

33 3 8

> 8 6

8 10

2

4

4

20

4

8

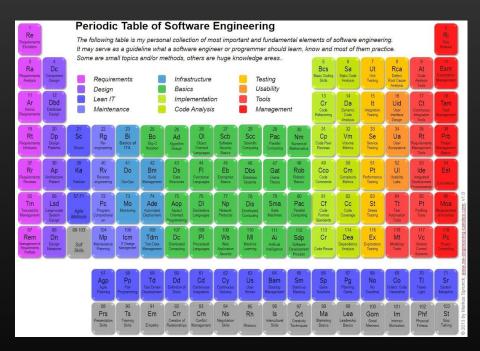
8

Course subject: analysis and specification of software systems

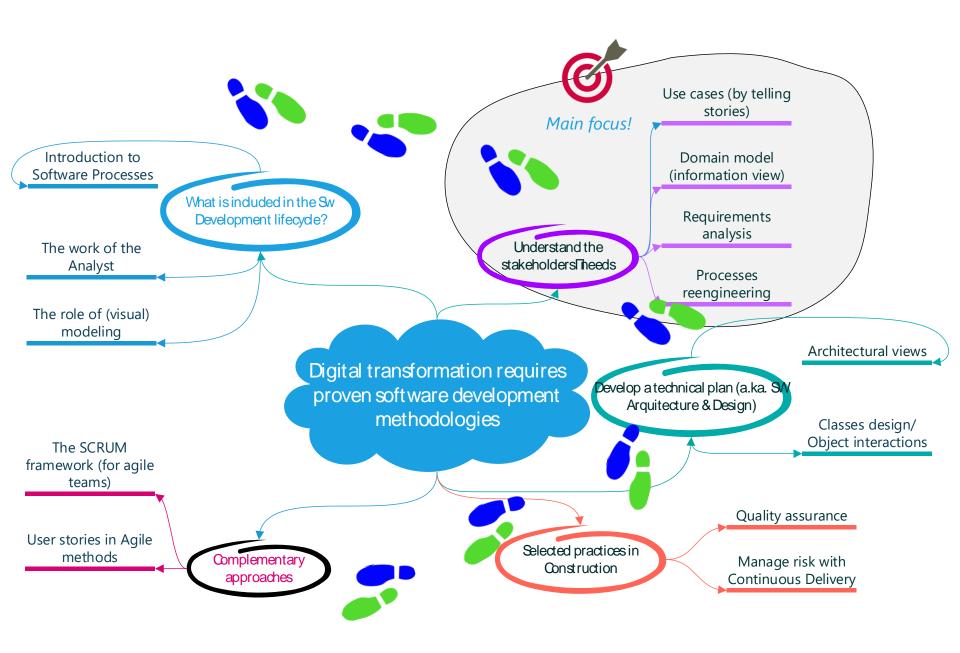
Systems analysis

Disciplines related to the characterization of the problem and specification of the technical solution

Development Process


Systematic engineering method. Defines activities, roles and outcomes

Visual modeling


Unified Modeling Language - UML

CASE tools (computer-aided software engineering)

E.g.: VisualParadigm

http://www.sw-engineering-candies.com/blog-1/periodic-table-of-software-engineering-know-how

Note on cooperative learning

Richard Felder

Engineer

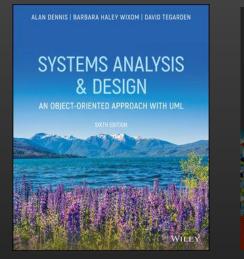
Richard M. Felder is the Hoechst Celanese Professor Emeritus of Chemical Engineering at North Carolina State University. Wikipedia

COOPERATIVE LEARNING It leads to more and deeper learning and longer retention of information; greater development of high-level thinking, problem-solving, communication, and interpersonal skills; more positive attitudes toward engineering and science curricula and careers and greater retention in those curricula; and better preparation for the workplace.

How to study for AS?

Attend the classes ;)

All topics in the Exam are addressed in classes, including some viewpoints/discussion questions.

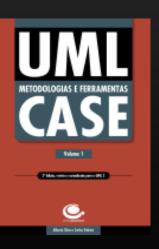

Labs & project

Actively participate in every assignment.

Pitfalls

- A distribute the tasks and cut the discussion in lab assignment... everybody shoud go through the "process".
- Iet the "smart volunteer" take all the responsabilities...

Main references



See also selected reference is Moodle

