% Joint probability distribution P_XY = [1/8, 1/8, 1/24; 1/8, 1/4, 1/8; 1/24, 1/8, 1/24]; % Values of X and Y X_vals = [-1, 0, 1]; Y_vals = [-1, 0, 1]; % Marginal distributions P_X = sum(P_XY, 2); % Sum across rows for X P_Y = sum(P_XY, 1); % Sum across columns for Y % Checking independence independence = true; % Assume independence initially for i = 1:length(X_vals) for j = 1:length(Y_vals) % Calculate product of marginals product_marginals = P_X(i) * P_Y(j); % Compare with joint probability if abs(P_XY(i, j) - product_marginals) > 1e-10 independence = false; break; end end if ~independence break; end end % Display results fprintf('Marginal PMF of X: \n'); disp(P_X'); fprintf('Marginal PMF of Y: \n'); disp(P_Y); if independence fprintf('X and Y are independent.\n'); else fprintf('X and Y are not independent.\n'); end