
Algorithms and Data Structures
(

40437
AED — Algoritmos e Estruturas de Dados)

8303, 8322
LEC,

8240, 8316
LECI,

8295
LEI, 2022/2023

— T.01 —

Summary:

• How to move around in this document

• What AED is all about

• Rules of the game

• List of planned lectures

• List of assignments

• List of important dates

• Recommended bibliography for the entire course

• Exercises (for this lesson)

Teachers in alphabetical order:

• (JMR) João Manuel Rodrigues, jmr@ua.pt, IEETA

• (JM) Joaquim Madeira, jmadeira@ua.pt, IEETA

• (PC) Pedro Cirne, cirne@ua.pt, IT ?

• (PL) Pedro Lavrador, plavrador@ua.pt, IT 2

• (TOS) Tomás Oliveira e Silva, tos@ua.pt, DETI 4.2.37

When and where:

Monday Tuesday Wednesday Thursday Friday

9h-11h P1 PL
4.2.07

P3 JMR
4.2.08

P7 PL
4.2.08

11h-13h P4 PL
4.2.07

P6 JMR
4.2.08

P8 JM
4.2.08

14h-16h TP1 TOS
Anf. IV

P9 JM
4.2.08

P10 PC
4.2.08

16h-18h P2 TOS
4.2.08

18h-20h P5 TOS
4.2.08

This document was last updated on November 22, 2022.

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 1 (1)

mailto:jmr@ua.pt
mailto:jmadeira@ua.pt
mailto:cirne@ua.pt
mailto:plavrador@ua.pt
mailto:tos@ua.pt

How to navigate these lecture notes

Links to other parts of this document and to other documents are displayed in dark orange.

To avoid an excessive use of that color, in the summary of each lecture the links to the various parts of the lecture

are located in the filled dark orange circles (•).

These class notes are subdivided into lecture units. Each lecture unit deals with a single subject.

At the bottom of each page, on the right hand side, there are links that go

• to the first page of this document (Home link)

• to the first page of the current lecture unit (T.NN)

• to the first page of the exercises for the current lecture unit (P.NN)

• to the previous lecture unit (J), if it exists

• to the next lecture (I), if it exists

The list of planned lectures pages has links to all lectures units. It also includes the dates each part of the lecture

units should be delivered/viewed. The first page of this document has a direct link to that page.

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 2 (2)

What AED is all about

Program = Algorithm + Data Structures

Good Program =

Algorithm + Good Data Structures

or

Good Algorithm + Data Structures

Very good Program = Good Algorithm + Good Data Structures

Exceptional Program = State-of-the-art Algorithm + State-of-the-art Data Structures

A good algorithm/data structure has a “small” (i.e., as small as theoretically possible) computational complexity.

The computational complexity measures the time or memory (space) resources needed to run the program.

A state-of-the-art algorithm/data structure does the job better than any other algorithms/data structures available

to solve the same problem.

It may be advantageous to trade more time for less space (if space is scarce), or to trade more space for less time (is

space is plentiful).

A good programmer knows many good algorithms and data structures (and knows where to look for more), and is

capable of determining which ones are best for the job at hand.

An exceptional programmer is capable of devising new algorithms or data structures to solve a new problem.

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 3 (3)

Example: computing Fibonacci numbers

The Fibonacci numbers are defined by the recursive for-

mula

Fn = Fn−1 + Fn−2, n > 1,

with initial conditions F0 = 0 and F1 = 1. We present

below some possible ways to compute Fn in C (without

detection of bad inputs or of arithmetic overflow):

• Recursive implementation:

int F_v1(int n)

{

return (n < 2) ? n : F_v1(n - 1) + F_v1(n - 2);

}

• “Memoized” recursive implementation:

int F_v2(int n)

{

static int Fv[50] = { 0,1 };

if(n > 1 && Fv[n] == 0)

Fv[n] = F_v2(n - 1) + F_v2(n - 2);

return Fv[n];

}

• Non-recursive implementation:
int F_v3(int n)

{

int a,b,c;

if(n < 2)

return n;

for(a = 0,b = 1;n > 1;n--)

{

c = a + b; // c = F(n-2) + F(n-1)

a = b; // a = F(n-1)

b = c; // b = F(n)

}

return b;

}

• “Clever” implementation (Binet’s formula):
int F_v4(int n)

{

const double c1 = 0.44721359549995793928;

const double c2 = 0.48121182505960344750;

return (int)round(c1 * exp((double)n * c2));

}

Note that Fn = 1√
5

(
1+
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n
.

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 4 (4)

Rules of the game (part 1)

The theoretical lectures are not mandatory. They will ibe broadcast in a zoom session and will be recorded. The

recordings of the lectures will be available one day after the lecture on the elearning platform.

The presence in the practical classes is mandatory for ordinary students. Failure to attend without a valid justification

more than N practical classes means course failure (RPF), without possibility of attending the supplementary exams

season (época de recurso), N being equal to 3 for ordinary students and to∞ for working students.

The teaching language is Portuguese. All learning materials will be written in English. If requested, exam materials

can also be provided in English.

Grading in AED will abide by the following rules:

• All grade computations will be done using double precision floating point arithmetic.

• Grading has two components: theoretical part, G1, and practical part, G2, with 0.0 6 G1, G2 6 20.0.

• A grade below 7.0 in either of the two parts means course failure (RNM).

• The tentative final grade G is given by G = max
(
20, round

(
G1+G2

2
+ B + 0.15

))
, where 0 6 B 6 2

are bonus points awarded to students uppon completion of extra challenging tasks suggested by the professors of

the practical classes.1 If G 6 16, then G will be the final grade. Otherwise, the final grade may also take into

consideration the report of one extra practical work. In that case the final grade will be > 16 and 6 20.

1Only a small fraction of all students will be elegible to do these extra tasks. Only students deemeed to be exceptional by their professor will be invited to do these extra challenging
tasks.

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 5 (5)

Rules of the game (part 2)

• The G1 grade will be the result of a final exam. The final exam is divided into three parts of one hour each, and

the grade is computed using the formula

G1 = 0.40t1 + 0.35t2 + 0.25t3,

where t1 is the best grade and t3 is the worst grade of the parts of the exam. For example, if the grades of the

three parts are 14, 17, 12, then

G1 = 17× 0.40 + 14× 0.35 + 12× 0.25 = 14.70

• TheG2 grade is the weighted average of two reports of work done during the semester; G2 = 0.55p1+0.45p2,

where p1 is the best grade and p2 is the worst grade. Each report will be graded based on

1. clarity of exposition,

2. quality of the results obtained,

3. code quality,

4. originality, and

5. punctuality in the report submission.

Plagiarism will be severely punished. Each report can be done by groups of at most 3 students. Grades may be

different for the students of each group, according to

1. how much each contributed to the work (stated in the report), and

2. the teacher’s perception of how much each student appeared to work.

• In the supplementary exams and special seasons the G2 grade will be computed in the same way. Students

wishing to raise their grades must do so either in the supplementary exams season or in the next school year.

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 6 (6)

List of planned lectures

Lecture Title

T.01 — summary Introduction

T.02 — summary The C programming language

T.03 — summary The C++ programming language

T.04 — summary Computational complexity

T.05 — summary Elementary data structures

T.06 — summary Searching

T.07 — summary Sorting

T.08 — summary Algorithmic techniques

T.09 — summary Finding all possibilities

T.10 — summary Graphs

T.11 — summary Some topics on computational geometry

list List of present and past assignments

The summary of each lecture includes the dates when it was, or is planned to be, delivered. Be aware that the order

the lectures will be delivered may be different from what is displayed above. For example, in the 2022/2023 school

year, the lecture about graphs will be delivered after lecture T.08 or even earlier.

The list of important dates page contains the dates of important events (exam dates and written report submission

dates).

The assignments can be partly done in the practical classes.

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 7 (7)

Important dates

Class dates: (date formats: day-month-year, or, in abbreviated form: day.month)

Mondays 26.09 03.10 10.10 17.10 24.10 31.10 07.11 14.11 21.11 28.11 05.12 12.12 19.12

P1, P4, TP1, P2, P5 1 2 3 4 5 6 7 8 9 10 11 12 13

Wednesdays 21.09 28.09 12.10 19.10 26.10 02.11 09.11 16.11 23.11 30.11 07.12 14.12 21.12 04.01

P3, P6 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Thursdays 22.09 29.09 06.10 13.10 20.10 27.10 03.11 10.11 17.11 24.11 15.12 22.22 05.01

P7, P8, P9 1 2 3 4 5 6 7 8 9 10 11 12 13

Fridays 23.09 30.09 07.10 14.10 21.10 28.10 04.11 11.11 18.11 25.11 02.12 09.12 16.12 06.01

P10 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The number in the lower right-hand side of each table cell is the sequence number of the classes that fall on that day

of the week.

Written report Date due Title

First 05-12-2022 Speed run

Second ??-??-???? Word ladder

Unless explicitly authorized by the course teacher, all programming will be done in either C or C++.

Final exam: ??-??-????

Supplementary exam: ??-??-????

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 8 (8)

List of planned lectures (lecture T.01)

Lecture Date Topic

T.01 ??-??-???? What AED is all about

Rules of the game

Recommended bibliography

P.01 — homework

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 9 (9)

List of planned lectures (lecture T.02)

Lecture Date Topic

T.02 ??-??-???? My first C program

C language overview

Preprocessor directives

Comments

Data types (and pointer arithmetic)

Declaration, definition, and scope of variables

Assignments and expressions

Statements

Functions

Standard library functions

Coding style

P.02 How to compile and run a program (GNU/Linux)

How to manage archives

The “Hello World” program

Program to print some numbers

Program to print the size in bytes of the fundamental data types

Computation of Fibonacci numbers

Printing all command line arguments

Integer arithmetic pitfalls

A more elaborate example (integer factorization)

Final example (rational approximation)

gdb and valgrind

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 10 (10)

List of planned lectures (lecture T.03)

Lecture Date Topic

T.03 ??-??-???? My first C++ program

Overview of the C++ programming language

Some differences between C and C++

Classes

Templates

Exceptions

Other stuff (not explained in this course

P.03 How to compile a C++ program (linux)

The “Hello World” program

Program to print some numbers

Program that uses function overloading

Programs that uses a class

Program that uses a function template

Program that uses a class template

Program that uses an exception handler

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 11 (11)

List of planned lectures (lecture T.04)

Lecture Date Topic

T.04 ??-??-???? Algorithms

Abstract data types

Computational complexity

Algorithm analysis

Asymptotic notation

Classes of problems

Useful formulas

Least squares fit

A first example

More examples

P.04 Paper and pencil exercises (with solutions and computer verification)

Extra problems (without solutions)

Empirical study of the computational complexity of three algorithms

Formal and empirical computational complexity of several algorithms

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 12 (12)

List of planned lectures (lecture T.05)

Lecture Date Topic

T.05 ??-??-???? Data containers

Arrays (and circular buffers)

Linked lists (singly- and doubly-linked)

Stacks

Queues

Deques

Heaps

Priority queues

Binary trees

Tries

Hash tables

P.05 Stacks

Singly-linked lists

Queues

Deques

Doubly-linked lists

Min-heap

Priority queue

Hash tables

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 13 (13)

List of planned lectures (lecture T.06)

Lecture Date Topic

T.06 ??-??-???? Searching unordered data (in an array, in a linked list, in a binary tree, or in a hash table)

How to improve the search time (data reordering)

Searching ordered data (in an array — binary search — or in an ordered binary tree)

P.06 Study of some binary search implementations

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 14 (14)

List of planned lectures (lecture T.07)

Lecture Date Topic

T.07 ??-??-???? Bubble sort and shaker sort

Insertion sort and Shell sort

Quick sort

Merge sort

Heap sort

Tree sort

Other sorting routines (rank sort, selection sort)

Computational complexity summary

P.07 Study of the execution time of some sorting routines

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 15 (15)

List of planned lectures (lecture T.08)

Lecture Date Topic

T.08 ??-??-???? Divide-and-conquer (DaC) and the master theorem

DaC examples

Dynamic programming (DP)

DP examples

P.08 ???

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 16 (16)

List of planned lectures (lecture T.09)

Lecture Date Topic

T.09 ??-??-???? Exhaustive search

Depth-first search

Breadth-first search

Traversing a binary tree in depth-first order and in breadth-first order

Backtracking

Pruning

An example: a chessboard problem

Two extra examples (sudoku and klotski)

P.09 ???

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 17 (17)

List of planned lectures (lecture T.10)

Lecture Date Topic

T.10 ??-??-???? Introduction (definitions and examples)

Data structures for graphs

Graph traversal

Connected components

Connected components using the union-find data structure

All paths

All cycles

Shortest path

Minimum spanning tree

P.10 ???

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 18 (18)

List of planned lectures (lecture T.11)

Lecture Date Topic

T.11 ??-??-???? Steiner trees

Point location (grid, quad-tree, oct-tree)

Convex hull, Delaunay triangulation, Voronoi diagram (examples)

P.11 ???

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 19 (19)

List of assignments

List of present and past first assignments:

� 2022/2023, Speed run (this is the one you need to do), due 05-12-2022

� 2021/2022, Merkle-Hellman cryptosystem

� 2020/2021, Generalized weighted job selection

� 2019/2020, The assignment problem

� 2018/2019, The traveling salesman problem

List of present and past second assignments:

� 2022/2023, Work ladder (this is the one you need to do), due ??-??-????

� 2021/2022, Multi-ordered trees

� 2020/2021, Study of some sorting routines

� 2019/2020, Word statistics

� 2018/2019, Random ordered trees

List of present and past third assignments:

� 2020/2021, Recursively decoding a non-instantaneous binary code

� 2018/2019, Huffman encoder and decoder

� 2017/2018, Connectivity using union-find

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 20 (20)

Recommended bibliography for the entire course

Algorithms, Robert Sedgewick and Kevin Wayne, fourth edition, Addison Wesley, 2011
Análise da Complexidade de Algoritmos, António Adrego da Rocha, FCA.
Analysis of Algorithms, Jeffrey J. McConnell, second edition, Jones and Bertlett Publishers, 2008.
C in a nutshell, a desktop quick reference, Peter Prinz and Tony Crawford, O’Reilly, 2006.
Estruturas de Dados e Algoritmos em C, António Adrego da Rocha, terceira edição, FCA.
Programming Pearls, Jon Bentley, second edition, Addison Wesley, 2000.
Thinking in C++. Volumes One and Two, Bruce Eckel and Chuck Allison, Prentice Hall, 2000 and 2003.
Algorithms, Jeff Erickson, June 2019.
Cracking the Coding Interview: 189 Programming Questions and Solutions, Gayle Laakmann McDowell, 6th Edition, 2020.

Online resources — books and videos
(requires institutional login, just enter your ua.pt email address and select a SSO login)

https://learning.oreilly.com/playlists/885c7e65-4abd-4459-97b0-62c8b7ae6720

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 21 (21)

https://jeffe.cs.illinois.edu/teaching/algorithms/
https://learning.oreilly.com/playlists/885c7e65-4abd-4459-97b0-62c8b7ae6720

Books that each serious programmer should have (incomplete list)

Algorithm Design, Jon Kleinberg and Éva Tardos, Addison Wesley, 2006.
Algorithms, Robert Sedgewick and Kevin Wayne, fourth edition, Addison Wesley, 2011
Computational Geometry. Algorithms and Applications, M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, second
edition, Springer, 2000.
Concrete Mathematics, Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, second edition, Addison Wesley, 1994.
Handbook of Data Structures and Applications, Dinesh P. Mehta and Sartaj Sahni (editors), Chapman and Hall/CRC, 2005.
Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, third edition, The MIT
Press, 2009.
Numerical Recipes. The Art of Scientific Computing, William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery, third edition, Cambridge University Press, 2007.
Object-Oriented Software Construction, Bertrand Meyer, second edition, Prentice-Hall, 1997.
The Algorithm Design Manual, Steven S. Skiena, second edition, Springer, 2008.
The Art of Computer Programming, Volume 1 (Fundamental Algorithms), Donald E. Knuth, third edition, Addison Wesley, 1997.
The Art of Computer Programming, Volume 2 (Seminumerical Algorithms), Donald E. Knuth, third edition, Addison Wesley, 1998.
The Art of Computer Programming, Volume 3 (Sorting and Searching), Donald E. Knuth, third edition, Addison Wesley, 1998.
The Art of Computer Programming, Volume 4A (Combinatorial Algorithms, Part 1), Donald E. Knuth, Addison Wesley, 2011.

AED 2022/2023
Tomás Oliveira e Silva

Home P.01 T.01I page 22 (22)

Exercises

— P.01 —
The grades on the three parts of the final exam of a student were 12.2, 17.2 and 9.4, and his grades on the written reports were

15 and 12. He did not do any challenging extra problem. What is his final grade?

AED 2022/2023
Tomás Oliveira e Silva

Home T.01I P.01 page 1 (23)

The C programming language

— T.02 —

Summary:

• My first C program

• C language overview

• Preprocessor directives

• Comments

• Data types

• Declaration, definition, and scope of variables

• Assignments and expressions

• Statements

• Functions

• Standard library functions

• Coding style

• Useful web sites

• Exercises

[Remark: due to space and time limitations, we will omit many details.]

According to an IEEE spectrum survey, on a scale from 0 to 100,
in 2022 the top five most popular programming languages were:

• Python 100.0 (100.0 in 2021)

• C 96.8 (94.7 in 2021)

• C++ 88.6 (92.4 in 2021)

• C# 87.0 (82.4 in 2021)

• Java 70.2 (95.4 in 2021)

(C is in first place in another popularity index.) Among popular
programming languages, C is the most energy-efficient one.

Recommended bibliography for this lecture:

• C in a Nutshell, A Desktop Quick Reference, Peter
Prinz and Tony Crawford, O’Reilly, 2006.

• C, A Reference Manual, Samuel P. Harbison III and Guy
L. Steele Jr., fifth edition, Prentice Hall, 2002.

• C Programming (A Comprehensive Look at the C Pro-
gramming Language and Its Features), wiki book.

• The C Programming Language, Brian W. Kernighan and
Dennis M. Ritchie, second edition, Prentice Hall, 1988.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 1 (24)

https://spectrum.ieee.org/top-programming-languages-2022
https://www.tiobe.com/tiobe-index/
https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf
http://en.wikibooks.org/wiki/C_Programming
http://en.wikibooks.org/wiki/C_Programming

My first C program

The “hello world” program:

1 /*

2 ** Hello world program

3 */

4

5 #include <stdio.h>

6

7 int main(void)

8 {

9 puts("Hello world!");

10 return 0;

11 }

The line numbers on the left are not part of the code.

Explanation:

� Lines 1 to 3 are a comment. The comment starts with /*

and ends with */.

� Line 5 instructs the compiler to replace that line by the con-
tents of the file named stdio.h (one of the files of the C
compiler’s standard libraries).

� Lines 7 to 11 declare and define a function named main,
which is the entry point of the program (the entry point of
the program is always called main); in this case main does
not have any arguments and it returns an integer.

� Lines 8 to 11 constitute the body of the function.

� Line 8 starts a block of code; code blocks start with a {.

� Line 9 is a call to a function named puts (declared in
stdio.h), belonging to the C standard library, that outputs
its string argument to the terminal. Strings are text, and are
delimited by ".

� Line 10 forces a return from the main function with a return
value of 0 (since main is the entry point of the program,
this actually specifies the error code of the entire program;
0 means all is well, non-zero means some error occurred).

� Line 11 ends a block of code; code blocks end with a }.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 2 (25)

C language overview

Each C source code file may contain

• preprocessor directives

Preprocessor directives tell the compiler to manipulate the source code in certain ways. For example, the

#include directive tells the compiler to replace the entire include directive line by the text of the file whose

name appears after the include directive. There are also directives that allow us to define replacement text for a

given word and to do conditional compilation of code.

• comments

A comment is a chunk of text that is ignored by the compiler

• declaration of new data types

New data types agglomerate one or more existing data type into a new type, and give it a name that we can use

from that point on to refer to that new type.

• declaration of variables and of functions

A declaration of a variable is a description of the type and memory storage attributes of the variable. A declaration

of a function is a description of the arguments and return value (if any) and their type of the function. It does
not reserve space in memory for a variable and no code is produced for a function. After a declaration, the

variable or function can be used in our code, even if its definition (see next item) is elsewhere in the code (it can

even be missing in our code if it resides in a code library).

• definition of variables and of functions

When the compiler encounters a definition it reserves space for a variable and generates code for a function. It

is possible to declare and define a variable (or a function) at the same time. Variable and function names have

to be unique.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 3 (26)

Preprocessor directives (part 1)

The C preprocessor can be used to modify on the fly the text that is going to be fed to the C compiler. Each

preprocessor directive must be placed on a line that begins with the character #. The most important of them are:

• #include <filename>

#include "filename"

This directive instructs the preprocessor to replace the directive by the entire text of the file whose name follows

the include directive. The first form looks for files only in compiler directories (standard library header files). The

second form looks for user files (in the current directory).

• #define NAME substitution_text

#define NAME(arg1,arg2,...) substitution_text

This directive defines a preprocessor macro named NAME. On subsequent lines, each time the text NAME appears in

the source code it is replaced by the substitution text. In the first form, the macro does not have any arguments.

In the second form it can have one or more arguments. If the name of an argument appears in the substitution

text it gets replaced by the text that was placed in the argument when the macro was invoked. For example, the

code fragment
#define C (int)

#define X(i) x[i]

#define Y(i,j) i * j

C X(3) + Y(i,7);

gets transformed into the code
(int) x[3] + i * 7;

Note, however, that recursively expanding the same macro name is automatically disabled by the C preprocessor,

so no infinite expansions can occur.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 4 (27)

Preprocessor directives (part 2)

• #undef NAME

It is not possible to redefine a macro (with a different replacement text) without first removing its previous

definition. This directive makes sure that a previous definition of the macro (if any) is removed.

• #if EXPRESSION

#elif EXPRESSION

#else

#endif

If the integer expression, which must use only constants known to the preprocessor (macros with replacement

text that are integers), is non-zero, then the text in the lines following an #if directive and up to an #elif, an

#else or an #endif directive gets fed to the compiler; #elif and #else directives are treated in the logical

way. Symbols unknown to the preprocessor are replaced by zeros. For example, in the code fragment

#if N == 1

line1

#elif N == 2

line2

#else

line3

#endif

line1 is passed to the compiler only if the macro N is defined and evaluates to 1, line2 is passed to the compiler

only if the macro N is defined and evaluates to 2, and line3 is passed to the compiler if the macro N does not

evaluate to either 1 or 2 (if it is not defined it evaluates to zero, and so it falls in this case).

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 5 (28)

Preprocessor directives (part 3)

The substitution text of a macro can contain zero or more occurrences of the special character #. This special

character followed by a macro argument name tells the preprocessor to remove the # and to stringify the macro

argument, that is, to convert the macro argument into a string. For example, in the following code

#define abc(x,y) # x "_" # y

abc(123,xyz)

the first line becomes empty (it is a macro definition), and the second line becomes "123" "_" "xyz", which is the

same as "123_xyz" (the C compiler concatenates consecutive constant strings — note that there does not exist any

+ sign between the strings!).

The substitution text of a macro can contain also zero or more occurrences of the special characters ##. These

special characters fuse what is on their left size with what is on their right side (no space character in between). For

example, in the following code

#define abc(x,y) x y

#define def(x,y) x ## y

abc(xyz,123)

def(xyz,123)

the first two lines become empty (macro definitions), the third line becomes xyz 123 (note the space between xyz

and 123), and the fourth line becomes xyz123, which is a single token (for example, a variable or function name).

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 6 (29)

Comments

Comments are annotations placed in the source code of a program. A good comment explains a non-obvious thing,

such as how some piece of code works, or what trade-offs (between, say, execution time and memory usage) were

made in that part of the code and why. Comments are also usually used to indicate who wrote a part of a program,

and to record significant changes in the source code.

In C there are two kinds of comments: single line comments, which begin with // and end at the end of the line,

such as in
d = (d + 1) | 1; // if d is even and non-negative increment it by one, otherwise, increment it by 2

and comments that can span multiple lines, which begin with /* and end with the first */, such as in
/*

** in the following loop d takes the values 2, 3, 5, 7, 9, 11, 13, 15, 17, ...,

** up to (and including) the square root of n

**

** we would have liked for d to be the prime numbers 2, 3, 5, 7, 11, 13, 17, ...,

** but that is much more difficult to achieve

**

** FIX ME: there is arithmetic overflow if n is a prime number close to the largest representable

** signed integer; for 32-bit integers this can be fixed by exiting the loop as soon as d > 46340

*/

for(d = 2;d * d <= n;d = (d + 1) | 1)

Comments are removed by the preprocessor. The preprocessor joins a line terminated by \ with the next line, so

single line comments may actually span more than one line if they are terminated in that way.

A simple and fast way to force the compiler to ignore a large continuous piece of code, even it is has comments, is

to put it between #if 0 and #endif lines.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 7 (30)

Data types (part 1a, integer data types)

The C language has the following fundamental integer data types (in non-decreasing order of size): char, short,

int, long and long long. Each of these types can be either signed (the default with the possible exception of

the char type) or unsigned. In the following code fragment we present an example of the simultaneous declaration,

definition, and initialization of variables for each one of these types.

char c0 = 'A'; // by default signed on most compilers

signed char c1 = 'B'; // make sure the type is signed

unsigned char c2 = 'C';

short s0 = 1763; // the same as signed short

unsigned short s1 = 1728;

int i0 = -1373762; // the same as signed int

unsigned int i1 = 8382382U; // the trailing U signals that the integer constant is unsigned

long l0 = 82781762873L; // the same as signed long and signed long int

unsigned long l1 = 38273827322UL; // the int is optional, so we do usually do not put it

long long L0 = 82781762843984398473LL; // the same as signed long long int

unsigned long long L1 = 38273827334934983322ULL; // the int is optional

Unfortunately, the designers of the C language did not specify the size (number of bytes) of most of these types.

So, an int may have two bytes if the compiler is producing code for a very old processor, and four bytes if it is

targeting a modern processor. The types int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t,

and uint64_t, defined in the header file stdint.h, should be used whenever a specific size is desired.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 8 (31)

Data types (part 1b, integer data types)

Let b0, b1, b2, . . . , bn−2, bn−1 be the bits on an n-bit integer B, b0 being the least significant bit and bn−1 being

the most significant bit. On virtually all contemporary processors, for an unsigned integer data type the value of

B is given by

B = b0 × 20 + b1 × 21 + b2 × 22 + · · ·+ bn−2 × 2n−2 + bn−1 × 2n−1 =

n−1∑
i=0

bi2
i.

Therefore, to increase the number of bits of an unsigned integer the new bits get a value of 0 since doing that does

not change the value represented by the bits. To reduce the number of bits, in C the most significant bits are simply

discarded (no error is raised if the result does not represent the original unsigned integer; it is assumed that the

programmer knows that she/he is doing).

For a signed integer data type the value of B is given by (two’s complement!)

B = b0 × 20 + b1 × 21 + b2 × 22 + · · ·+ bn−2 × 2n−2 − bn−1 × 2n−1

= −bn−12
n−1 +

n−2∑
i=0

bi2
i = −bn−12

n +

n−1∑
i=0

bi2
i.

This last equality, that expresses B with n+ 1 bits in which bn = bn−1, shows that to increase the number of bits

of a signed integer the new bits get the value of the most significant bit of the original signed integer, since doing

that does not change the value represented by the bits. As for unsigned integers, to reduce the number of bits, in

C the most significant bits are simply discarded (again, no error is raised if the result does not represent the original

signed integer).

To convert from a n-bit signed to an n-bit unsigned integer, and vice versa, the C compiler simply does nothing

(does not change any bit). Again, no error is raised if the result does not represent the original integer.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 9 (32)

Data types (part 2, floating point)

The C language has two fundamental floating point data types: float (single precision, 4 bytes, about 7 significant

decimal digits) and double (double precision, 8 bytes, about 16 significant decimal digits). In the following code

fragment we present an example of the simultaneous declaration, definition, and initialization of variables of each one

of these types.

float f = 1.23e3f; // the same as 1230.0f (f denotes a 4-byte floating point constant)

double d = -1.23e6; // the same as -1230000.0 (no f, so a 8-byte floating point constant)

All contemporary processors represent floating point numbers using the IEEE 754 standard. For example, a single

precision float number is encoded in 32 bits according to the following format:

31

S

30

E

2322 0

M

One bit encodes the sign (S) of the number, 8 bits encode an exponent (E), and 23 bits encode a so-called man-

tissa (M). In this format, assuming that both E and M are unsigned integers with the appropriate number of bits, a

non-zero real number x is given by

x = (−1)S ×
(

1 +
M

223

)
× 2E−127.

The real number 0.0 is encoded by all zeros; 0 and 255 are special values of E, for which the previous formula is not

valid.

The double precision floating point format is similar, but the number of bits used to represent the exponent and

the mantissa are larger (11 bits for the exponent and 52 bits for the mantissa):

63

S

62

E

5251 0

M

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 10 (33)

Data types (part 3, pointer data types)

The C language has only one more fundamental data type: a pointer. A pointer is an unsigned integer that represents

the memory address where a variable of a given type is stored. One can, using the appropriate syntax (see below) read

or write the contents of the memory location whose address is stored in the pointer. (Note that, to the processor, the

pointer itself is an integer variable.) Given that it is possible to do arbitrary modifications to a pointer, it is possible

in C to manipulate the contents of arbitrary memory locations (dangerous, but powerful!). Pointers are declared and

used by putting a * before the pointer name. To get the address of a variable put an & before the variable name. For

example, in the code fragment

float f = 1.0f,*pf = &f;

*pf = 2.0;

the single precision floating point variable f gets the value 1.0 at the end of the first line and the value of 2.0 at

the end of the second. As long as pf is not modified, it is possible to change the contents of f through the pointer.

Incrementing (decrementing) a pointer makes it point to the next (previous) adjacent variable in memory of the same

type. If that memory location does not hold a variable of that type, changing the memory through the pointer leads

to all kinds of problems. Assigning NULL to a pointer is the standard way in C to say that the pointer points to

nothing.

We also have pointers to functions: they store the starting address of a function.

Hic sunt dracones

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 11 (34)

Data types (part 4, literal values)

Literal values are the numeric constants we put in our programs. Integer literals can be encoded in several ways:

• as a character, as in ’3’, ’\’’, ’"’,’\n’, or ’\t’

• as a decimal integer, as in 123 or -17

• as an hexadecimal integer (base 16), as in 0x01F3

• as an octal integer (base 8), as in 0173. Constants beginning with with a 0 are specified in octal!

• as an binary integer (base 2), as in 0b10101 (gcc compiler).

With the exception of character encodings, append U at the end to mark an unsigned integer, append L to mark a

long integer, and append LL to mark a long long integer. All of these can also be in lower case.

Floating points constants can have an optional sign (plus or minus), can have zero or more digits before an optional

decimal point and zero or more digits after the decimal point (in all, at least one digit must be present). It can also

have an optional exponent part, composed by the letter e (upper or lower case), followed by a decimal signed integer.

For example, -1.2, .2e-13, +12., 1e-8 are all valid floating point literals. By default, floating point literals are in

double precision; append f to get a single precision literal, as in 1.23e4f.

String literals, enclosed by double quotation marks, as in "12\"9348", are of type const char *, i.e., they cannot

be overwritten. Note, however, that in the first line of the following code

char str[] = "292348"; // a char array with 7 elements (why?); str[0] = 'T' is ok

char *pstr = "2983"; // a string literal; *pstr = '4' gives a runtime error

the string is used to initialize the array, and so it is not a string literal.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 12 (35)

Data types (part 5, arrays)

It is possible to extend the fundamental data types in two ways: using arrays and creating new data types.

An array is just a contiguous group of variables of the same type. For example, the following code

double d[10],D[10][10];

declares an (unidimensional) array d of 10 double precision floating point numbers and declares a bi-dimensional array

(a matrix) D of 10 by 10 (i.e., 100) double precision floating point numbers. Accessing the array elements is done

using square brackets. Indices start at 0. Usually, no run-time tests are performed to verify if the index being used

to access an array element has a valid value. Using an out-of-range value does not result in any compiler error but

will usually lead to a hard to discover run-time error.

It is important to realize that C does not allow you to manipulate an entire array as a single entity. This is so because

an array name is a pointer to its first element. In the code

double d[10],*pd = d;

it is possible to perform accesses to the array using either d[i], which is the same as *(d+i),

This implies that i[d] is the same
as d[i], but no one sane writes an
array access in this twisted way.

or pd[i], which is

the same as *(pd+i). Both are equivalent, as long as pd is not modified. On the other hand, in the code

double d[10],*pd = &d[9];

an access to pd[i] is equivalent to an access to d[i+9], i.e., pd[-9] is the same as d[0] (assuming that pd has

not been modified).

In C a string is an array of characters, terminated by a 0. For example, the code

char str[20] = "AB"; // same as char str[20] = { 'A','B',0 }; or char str[20] = { 65,66,0 };

defines a string that can hold up to 19 characters (space must be reserved for the 0 terminator), initialized with the

two character string "AB".

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 13 (36)

Data types (part 6a, strings and character sets)

As mentioned in the previous page, a string is an array of characters terminated by a byte with value 0 (’\0’). The

actual text of the string depends on the character set used. For example, in the ASCII character set, a byte with a

(unsigned) value smaller than 32 is a control character, and a byte with a value between 32 and 126 represent letters,

numbers, and various symbols; values larger than 127 are undefined (127 is the delete symbol, usually not represented

graphically).

The following table presents some control characters (under GNU/Linux, use the command

man ascii

on a terminal to get the complete list).

value name meaning escape sequence

0 NUL null character (end of string) \0

7 BEL terminal bell \a

8 BS backspace \b

9 HT horizontal tab \t

10 LF new line \n

12 FF form feed (new page) \f

13 CR carriage return \r

27 ESC escape \e

Try also

man console_codes

and, on a GNU/Linux terminal,

echo -e "\e[5;32mHello\e[0m"

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 14 (37)

Data types (part 6b, strings and character sets)

The following table presents the so-called printable ASCII characters (range 32 to 126, i.e., 0x20 to 0x7E). The

encoding (the byte values) are presented in hexadecimal (sum of the value of the first row with the value of the first

column), because that makes the way the letters and numbers are organized in the ASCII code crystal clear.

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0x20 ! " # $ % & ’ () * + , - . /

0x30 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0x40 @ A B C D E F G H I J K L M N O

0x50 P Q R S T U V W X Y Z [\] ^ _

0x60 ‘ a b c d e f g h i j k l m n o

0x70 p q r s t u v w x y z { | } ~

For example, to get the character corresponding to a single decimal digit stored in an integer variable named digit

all we need to do is write

char c = (char)(0x30 + digit); // '0' + digit

To encode letters with accents it is possible to use the (now deprecated) so-called iso-latin character set, which

encodes them using byte values in the range 160 to 255. (Under GNU/Linux, use the command

man iso_8859-1

on a terminal to get the complete list of characters that can be encoded in this way.)

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 15 (38)

Data types (part 6c, strings and character sets)

Nowadays the preferred encoding is the ISO 10646 Universal

Character Set (UCS), which can encode any character in any

written language. In UCS, each character is encoded in a 31-

bit integer (the often mentioned unicode is a 20-bit subset

of the UCS). To avoid wasting a lot of memory space, it is

common to store the UCS/unicode code using the so-called

utf-8 encoding (use ”man utf8” to get more details about

this). In the uft-8 encoding of UCS, each ASCII character is

encoded in only one byte, and letters with accents are encoded

in two bytes. The following small table gives some examples

of the iso-latin and utf-8 encodings.

character iso-latin unicode utf-8 bytes unicode in a C string

á 0xE1 0x000E1 0xC3,0xA1 "\u00E1"

é 0xE9 0x000E9 0xC3,0xA9 "\u00E9"

ı́ 0xED 0x000E9 0xC3,0xAD "\u00ED"

ó 0xF3 0x000F3 0xC3,0xB3 "\u00F3"

ú 0xFA 0x000FA 0xC3,0xBA "\u00FA"

ã 0xE3 0x000E3 0xC3,0xA3 "\u00E3"

ç 0xE7 0x000E7 0xC3,0xA7 "\u00E7"

Irrespective of the encoding used, a string always terminates

with a single byte with the value 0, and that value cannot

occur anywhere inside the string.

Unicode (spoiler)

I’m excited about the proposal to add a ”brontosaurus” emoji codepoint
because it has the potential to bring together a half-dozen different
groups of pedantic people into a single glorious internet argument.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 16 (39)

https://m.xkcd.com/1726/
https://www.explainxkcd.com/wiki/index.php/1726:_Unicode

Data types (part 7, pointer arithmetic)

A pointer is the address of a memory location. In C, adding an integer to a pointer does not, in general, change the

address by that amount: it changes the address by that amount times the size in bytes of the type that the pointer

points to. Things are done in this way to make working with pointers easier to the programmer, in particular when

dealing with arrays. For example, in the code

int a[100];

int *pa = &a[30]; // same as int *pa = a + 30;

int *pA = &a[-2]; // same as int *pA = a - 2;

the pointer pa points to the element with index 30 of the array a. The address of this element is the sum of the

address of the beginning of the array (a, or, what is the same, &a[0]) with the number of bytes required to store 30

integers (120 bytes if each integer occupies 4 bytes). In C we only need to add 30 to the pointer to get the correct

address; the multiplication by the size of the type pointed to is done automatically by the compiler.

There are two exceptions to the above rule of pointer arithmetic:

• Adding an integer to a pointer to a function is meaningless, because the size of a function (the number of bytes of

its code) is not constant and is not known at compile time. So, if one attempts to do this the compiler generates

an error.

• Adding a constant to a pointer to void (the void type will be formally introduced soon), adds that many bytes

to the pointer (so sizeof(void) is 1 and not 0, as would be more natural). This is done in order to make life

easier to the programmer, since manipulating pointers to void is sometimes useful.

[Homework: study carefully how pointer arithmetic in done in C.]

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 17 (40)

Data types (part 8, structures and unions)

A structure is a contiguous group of variables of the same or different types, each with its own name. It is declared

using the keyword struct. In the following code,

struct dot

{

double x;

double y;

int color;

struct dot *next;

};

a new data type, named struct dot, is declared. It has 4 fields named x, y, color, and next, respectively of types

double, double, int, and pointer to a dot structure. (One can also put arrays, and even other structures, inside a

structure.) The following code fragment gives an example of how structure fields are accessed:

struct dot d; // a dot structure (RESERVES SPACE FOR THE STRUCTURE)

struct dot *pd; // a pointer to a dot structure (DOES NOT RESERVE SPACE FOR THE STRUCTURE)

pd = &d; // set the pointer to point to the structure (now it can be safely used)

d.x = 3; // set the x field to 3

pd->color = 5; // set the color field to 5

d.next = NULL; // set the next field to NULL (a special address that points to nothing)

Unlike arrays, the name of the structure represents the entire structure (it is not a pointer to its position in memory; to

get that use an &). The abbreviation struct struct_name; tells the compiler that a structure named struct_name

will be fully specified later on.

Unions are like structures, except that all its fields are superimposed in memory. (Believe it or not that is sometimes

useful.) Only one field should be in use at any given time.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 18 (41)

Data types (part 8, example of the use of a union)

In the following code we examine how the floating point number 10.0 is stored in memory.
#include <stdio.h>

int main(void)

{

union

{

double d;

unsigned char c[8];

}

t;

t.d = 10.0; // store a double

for(int i = 0;i < 8;i++)

printf(" %02X",t.c[i]); // print its individual bytes

printf("\n");

return 0;

}

On a little-endian processor (like all Intel and AMD processors) the least significant byte is stored in the lowest address,

and so the program’s output will be
00 00 00 00 00 00 24 40

On a big-endian processor (like the IMB PowerPC processor) the least significant byte is stored in the highest address,

and so the program’s output will be
40 24 00 00 00 00 00 00

This may be relevant when raw data is to be exchanged between two computer systems. If they have different

endianesses, extra work has to be done to invert the order of the bytes (in each data field).

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 19 (42)

Data types (part 9, enum and void)

It is possible to create a data type which has a discrete set of constant integer values, each one with its own name.

Such a type is an enumerated type. For example, the code

enum color { black,red,green,blue = 4 };

declares an enumerated type called enum color, that can have 4 values: black, red, green, and blue, respectively

with numerical values 0, 1, 2, and 4. (These numerical values are how the names are internally represented in the

program; the program code should use the names.) The following code defines a variable of this type and initializes

it with the value red:

enum color dot_color = red;

An enumerated data type is an integer data type. The compiler is free to choose the number of bytes needed to

internally represent its values.

There is one final data type that can be used in programs: void. This data type cannot have a value. It can be

used to tell the compiler that a function does not return anything, or that a function does not have arguments, as

exemplified in the following code:

void f(int x); // returns nothing, has an integer argument

int g(void); // returns an integer, does not have arguments

void h(void); // returns nothing, does not have arguments

A pointer to void is a popular way to declare a pointer to something which has a type that is not explicitly given. Of

course it is not possible to dereference a pointer to void, i.e., access the memory it points to. One has to first cast it

(see next slide) to a pointer to a specific type.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 20 (43)

Data types (part 10, casts)

It is possible to tell the compiler to explicitly convert one data type to another compatible type. Such conversions,

called casts, are implicitly done by the compiler in arithmetic expressions. For example, if i if an int and d is a

double, the result of the expression i + d, which is the sum of the integer variable i with the double precision

floating point variable d is a double precision floating point number. Before doing the addition, i is converted (cast)

to the double precision floating point number, and only then is the addition performed. To make the conversion

explicit, use (double)i + d. [My personal opinion is that mixing different data types in an expression without

explicit type conversions is a bad programming practice.]

In C, to explicitly convert x to the data type T one writes (T)x. In C it is only possible to convert from one numeric

type to another (that the compiler knows about), because the language does not offer any mechanism to tell the

compiler how to perform more complex conversions. For example, it is not possible to convert from an integer to a

structure. You will need to write your own function, and call it explicitly, in order to do that.

It is possible to cast a pointer to a data type to a pointer to another data type. That is a very dangerous thing to do

(you must know what you are doing!) unless one of the two is a pointer to void. Indeed, a pointer to void is the

standard way to go when one desires to perform some action on a memory region without needing to known what it

contains (for example, reading or writing it to a file):
void write_data(void *ptr,int size); // function to write size bytes starting at address ptr

double array[100];

write_data((void *)array,sizeof(array)); // write the 100 doubles

Since a pointer is represented by an unsigned integer (with a number of bits compatible with the processor architecture

the program is being compiled to) it is also possible to convert a pointer to a sufficiently wide integer (we recommend

using for this purpose the size_t data type), and vice versa, but that is not recommended (and not needed in any

sane and portable program).

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 21 (44)

Data types (part 11, typedef)

In C it is also possible to give another name to an existing data type using the typedef keyword. For example, the

following code fragment declares a data type named u64 that is supposed to be a 64-bit unsigned integer:

#ifdef IS_A_32_BIT_CPU

typedef unsigned long long u64; // A 64-bit data type on a 32-bit CPU

#endif

#ifdef IS_A_64_BIT_CPU

typedef unsigned long u64; // A 64-bit data type on a 64-bit CPU

#endif

The rest of our code can now use the type u64. Switching from a 32-bit to a 64-bit CPU requires only two very

small changes in the code (and a recompilation), namely, undefining the symbol IS_A_32_BIT_CPU and defining the

symbol IS_A_64_BIT_CPU. (This can be done without modifying the code by defining the appropriate symbol on

the command line that invokes the compiler.)

A typedef can also be used in conjunction with the declaration of a struct:

typedef struct dot // "struct dot" is now known to exist

{

double x,y; int color;

struct dot *next; // the type dot is not yet known, so we have to use struct dot, which is known

}

dot; // the name of the new type is dot; it is the same as struct dot

We recommend that type names end in _t just to distinguish them from valuable and function names. That was not

done above just to illustrate that that is not mandatory.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 22 (45)

Data types (part 12, sizeof)

The number of bytes used by any variable of type T is given by sizeof(T). The parenthesis are optional (to avoid

confusion due to the precedence of operators, please always use parenthesis). For example, in the code

int i = sizeof(dot); // same as i = sizeof dot;

the variable i will be initialized with the number of bytes required to store a dot in memory.

The number of bytes used by a specific variable named, say, var, is given by sizeof(var); again, the parenthesis

are optional. The sizeof operator does the right thing when the variable is an array (it returns the number of bytes

needed to store the entire array), despite the fact that in other places the array name is actually a pointer to its first

element.

The argument of the sizeof operator may also be an expression. For example, sizeof(1 + 2) is the number of

bytes needed to store the result of the expression 1 + 2. Here the parenthesis must be used; sizeof(1 + 2) is

not the same as sizeof 1 + 2 (why?).

The sizeof operator returns an integer with type size_t, which is usually a 32-bit data type in 32-bit processors

and a 64-bit data type in 64-bit processors (it is usually the number of bytes needed to store a pointer variable).

Thus, to avoid an implicit cast, the first example above should have been written as follows:

int i = (int)sizeof(dot);

[Homework: since a[i] is converted by the compiler into *(a + i) before generating code, what should the type

of i be on i) 32-bit processors, ii) 64-bit processors?]

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 23 (46)

Declaration, definition, and scope of variables (part 1)

Variables can be defined either outside or inside a function body. Variables defined outside a function body, called

global variables, can be used by more than one function. Variables defined inside a function body, called local variables,

can only be used directly by that function; they can, however, be made accessible to other functions called by that

function via pointers (it is a serious mistake to return the address of a local variable).

In the case of variables declared or defined outside a function body there are several cases to consider:

• Declaration of a variable that may, or may not, be

defined in the same source code file, as in
extern int global_var;

The extern keyword tells the compiler that the vari-

able may be defined elsewhere.

• Declaration of a variable that is defined in the same

source code file, as in
int global_var;

Without initialization, this is actually a declaration

(it will be transformed into a definition if a defini-

tion is not found elsewhere in the source code; in

that case the memory location where the variable

resides is initialized with all zeros).

• Definition of a variable that is defined in the same

source code file, as in

int global_var = 0;

• Declaration and definition of a global variable that is

visible only to the functions of the same source code

file, as in

static int global_var;

The same line of code in a different source code

file gives rise to a different variable (it is consid-

ered very bad practice to use variables with the same

name in this way).

Declarations remains in effect until the end of the source code file.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 24 (47)

Declaration, definition, and scope of variables (part 2)

A code block (a compound statement) begins with { and ends with }. A function body has one outermost code

block. Inside this outermost code block there may exist more, possibly nested, code blocks.

In the case of variables declared or defined inside a code block there are also several cases to consider:

• Declaration of a variable that may, or may not, be

defined in the same source code file, as in
extern int global_var;

• Definition of a variable that lives only inside the code

block, as in
int local_var_1; // uninitialized

int local_var_2 = 123; // initialized

Without initialization, the variable initially has an

unspecified value.

The variable is created whenever the program enters

the code block and is destroyed when it leaves the

code block.

• Definition of a persistent variable, visible only on the

code block, that retains its value even outside the

code block, as in

static int local_var_1; // initialized

// with zeros

static int local_var_2 = 123; // initialized

Each invocation of the function uses the same vari-

able.

In all cases, the declaration/definition is forgotten at the end of the code block. It is considered bad practice to give

the same name to a local and a global variable.

The C99 language standard allows declaration of variables anywhere inside a code block. In previous versions of the

C language standard, variables could only be declared at the beginning of a code block.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 25 (48)

Declaration, definition, and scope of variables (part 3)

Each data type may be modified by the use of so-called qualifiers. A qualifier may be used by the programmer in a

declaration or definition to tell the compiler what operations or optimizations it is allowed to do when copying that

variable to or from memory. Of the three qualifiers that the C language currently knows of, const, volatile, and

restrict, only the const qualifier will be described here. [Homework: find what the other two are for.] An object

qualified as const is constant; the program cannot modify it. In the following code

const double pi = 3.14159265358979323846;

the value of pi can be used in an expression as if it were a double variable, but it cannot be changed.

For a pointer type, a qualifier to the right of the asterisk qualifies the pointer itself; a qualifier to the left of the

asterisk qualifies the type of object it points to. For example, in the following code some things are allowed and some

are not (read the comments).

int i; // an integer

const int c = 3; // an integer constant

const int *p; // a (variable) pointer to a constant integer

// p = &i; is allowed, but i cannot be changed via the pointer

// *p = 1; is not allowed

// p = &c; is allowed

int * const q = &i; // constant pointer (it must always point to i)

// *q = 1; is allowed

int * const r = &c; // not allowed

const int * const z = &c; // allowed

The const qualifier is particularly useful to qualify function arguments that are pointers (many functions receive a

pointer to a memory region that will not be modified by the function, in which case a const will help the compiler

produce better code).

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 26 (49)

Declaration, definition, and scope of variables (part 4)

An example where variables are shadowed (to detect shadowed variables, use the gcc compilation flag -Wshadow):
1 // Contents of the file a.c

2 //

3

4 extern int x; // the global variable x defined in b.c (line 24); this variable is known for the rest of the file

5 int y = 1; // the global variable y (visible to all files that declare it as extern)

6 static int z = 3; // a local (to the file) variable z

7

8 int f(int x) // the global variable x becomes shadowed by the argument to the function

9 {

10 int t = z + x; // use of the variable z defined in line 6 and use of the argument to the function

11 {

12 int z = 2; // this local variable shadows the variable defined in line 6

13 t *= z; // use of the variable defined in line 12

14 for(int z = 1;z <= 10;z++) // new variable, also named z, shadows the variable defined in line 12

15 t += z * z; // use of the variable defined in line 14

16 t -= z; // use of the variable defined in line 12

17 }

18 return t;

19 }

20

21 // Contents of the file b.c

22 //

23

24 int x = 1; // the global variable x (visible to all files that declare it as extern)

25 static int z; // a local (to the file) variable z; it is DIFFERENT from the use defined in line 6

26

27 int g(void)

28 {

29 extern int y; // the global variable y defined in a.c (line 5); this variable is only known inside this code block

30 return y; // use of the variable defined in line 5

31 }

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 27 (50)

Assignments and expressions (part 1, assignments)

Assignments take the form LHS = RHS;, where LHS is the so-called lvalue (left value, or, more accurately, location

value) and where RHS is an expression. The lvalue represents the place where the value of the RHS expression will be

stored. The following code presents examples of legal and illegal LHS lvalues:

int a; a = 3; // legal

a + 1 = 7; // illegal (what is the location of a+1?)

int *pa; pa = &a; // legal (the pointer itself has a location)

*pa = 7; // legal

int A[10]; A[3] = a; // legal

const int c = 3; c = 4; // illegal (c has a location, but it is not writable)

When a pointer is used on the LHS to specify a write address, the LHS may also modify the pointer if the ++ or --

operators are used. For example, the following code

*++pa = 3; // same as *(++pa) = 3; increment the pointer, and use its new value as the write address

*pa-- = 3; // same as *(pa--) = 3; use the pointer as the write address, and then decrement the pointer

is legal, while the code

pa++ = &a; // nonsense (are we really trying to store &a in pa and then attempting to increment pa?)

is not.

An assignment is in itself an expression, with a value equal to that of the RHS (after conversion to the type of the

LHS). So, it is possible to put several assignments in a chain, as in the following code:

int i,j,k;

i = j = k = 3; // same as i = (j = (k = 3));

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 28 (51)

Assignments and expressions (part 2, expressions)

As expression is a sequence of constants, variables, and function calls intertwined with operators that combine them.

An expression may perform a mathematical calculation, in which case either we will be interested in recording its

value by saving it in a variable (as assignment), or we may be interested to test its value with the purpose of deciding

what the program should do next (a conditional jump). An expression may also be useful because of its side effects,

as when a function that returns nothing (void) is called to do something. The type of an expression is the type of

the value that is the result of the expression; it may be void if the expression has no value (as in a call to a function

that does not return anything). The following are examples of expressions (i is an int, d is a double and exit is

a function than has one int argument and that does not return anything):

i // int

i + '0' // int

(i << 3) ^ (i & 7) // int (the parentheses force i<<3 and i&7 to be evaluated first)

(double)i * d // double, same as i * d

exit(1) // void

i && (d == 3.0) // int

"abc" // const char *

"abc"[i] // char

i = 3 // int

d = i = 5 // double

i = d = 2.5 // int

The binary arithmetic operators perform an automatic type conversion whenever their two arguments are not of

the same type: the argument having the type with smaller range of values is converted to the other. For ex-

ample, a char is converted to an int (char + int becomes int + int), a signed int is converted to an

unsigned int (signed int - unsigned int becomes unsigned int - unsigned int), and an int is con-

verted to a double (int * double becomes double * double).

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 29 (52)

Assignments and expressions (part 3a, operators)

C has the following operators, in decreasing order of priority:

1. postfix operators, left to right associativity
[] array access

() function call

. structure field

-> structure field, from a pointer

++ post increment; use value, then increment

-- post decrement; use value, then decrement

2. unary operators, right to left associativity
++ pre increment; increment, then use value

-- pre decrement; decrement, then use value

! logic negation (0 gives 1, non-zero gives 0)

~ bitwise negation

+ does nothing (+1 is just 1)

- arithmetic negation

* pointer dereference

& address of

3. cast operator, right to left associativity

(T) type conversion; T is a data type

4. multiplicative operators, left to right associativity
* multiplication

/ division

% remainder

5. additive operators, left to right associativity
+ addition

- subtraction

6. shift operators, left to right associativity
<< shift left

>> shift right

Note: since these are usually used to perform multiplications
and divisions by powers of 2 they should have been given a
higher priority than addition and subtraction!

7. relational operators, left to right associativity
< less than

<= less than or equal to

> larger than

>= larger than or equal to

Note: 1 when true, 0 when false

8. equality operators, left to right associativity
== equal to

!= different from

Note: 1 when true, 0 when false

9. bitwise and, left to right associativity

& bitwise and

Left to right associativity: the thing on the left is done first. Homework: what is the value of (0 == 0 == 2)?

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 30 (53)

Assignments and expressions (part 3b, operators)

10. bitwise exclusive or, left to right associativity

^ bitwise exclusive or

11. bitwise or, left to right associativity

| bitwise or

12. logical and, left to right associativity

&& logical and

Note: if the argument on the left is zero, the result is 0 and
the argument on the right is not evaluated; otherwise the
result is 0 if the argument on the right is zero and is 1 if not.

13. logical or, left to right associativity

|| logical or

Note: if the argument on the left is nonzero, the result is 1
and the argument on the right is not evaluated; otherwise
the result is 1 if the argument on the right is nonzero and is
0 if not.

14. conditional operator, right to left associativity
?: a ? b : c evaluates to b if a is nonzero and

evaluates to c if a is zero

15. assignment operators, right to left associativity
= simple assignment

+= compound assignment (add)

-= compound assignment (subtract)

*= compound assignment (multiply)

/= compound assignment (divide)

%= compound assignment (remainder)

&= compound assignment (bitwise and)

^= compound assignment (bitwise exclusive or)

|= compound assignment (bitwise or)

<<= compound assignment (left shift)

>>= compound assignment (right shift)

Note: the compound assignment a op= b where op is one
of the operators above is equivalent to a = a op (b).

16. comma operator, right to left associativity

, discard an expression; start a new one

When in doubt about the priority of an operator, use parentheses! Right to left associativity means that things on

the right have precedence over things on the left. For example, a = b = 3; means a = (b = 3);. Left to right

associativity is just the opposite. Expressions with side-effects that affect the same variable, like j = i++ + ++i;,

are ill-defined because different compilers may choose different orders of evaluation.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 31 (54)

Statements (part 1, expression, compound, go to, and return statements)

Statements come in many guises:

• expression statements
As expression statement is an expression, possibly empty,

followed by a semicolon. The following are valid expres-

sion statements:
;

i = 2;

i = 3, j = 4;

exit(1);

• compound statements (block statements)
A compound statement (what we called before a code

block) starts with a {, is followed by zero of more decla-

rations or definitions of variables and zero of more dec-

larations of functions, is then followed by zero or more

statements, and is terminated by a }. The following code

is a valid compound statement:
{

int i = 3 + x; // x declared elsewhere

{

int j = i * i + y; // y declared elsewhere

k += i + j; // k declared elsewhere

}

}

• go to statements (by some considered harmful)

The go to statement causes an unconditional jump to an-

other statement in the same function. It should be used

with care and parsimony, if at all. The destination of

the jump is specified by the name of a label, as in

goto x_marks_the_spot;

The label itself is a name followed by a colon, as in

x_marks_the_spot:

The break and continue statements, to be presented be-

low, are disciplined (and disguised) go to statements.

• return statements
Return statements are used to end the execution of the

current function. It has the form

return expression;

The expression must be missing if the function does not

return anything (declared as returning a void). The

value of the expression is returned to the caller of the

function.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 32 (55)

https://en.wikipedia.org/wiki/Considered_harmful

Statements (part 2, if statements)

• if statements
An if statement has two possible forms: either

if(expression)

statement_t // to be executed if the

// expression is non-zero

or

if(expression)

statement_t // to be executed if the

// expression is non-zero

else

statement_f // to be executed if the

// expression is zero

Care must be taken if several if statements are nested and

the else part is present in some of them. For example, in

the following code

if(i >= 0)

if(i > 0)

j = 1;

else

j = 0;

else

j = -1;

the first else belongs to the second if and the second

else belongs to the first if, as suggested by the indenta-

tion of the code. (Advice: always indent correctly your

code.) This is so because the statement_t of the first if

is if(i > 0) j = 1; else j = 0;. If in doubt use

curly braces to transform a statement into a compound

statement:

if(i >= 0)

{

if(i > 0)

j = 1;

else

j = 0;

}

else

j = -1;

• loop statements
There are three kinds of loop statements: for, while, and

do-while statements. There is one way to quickly get

out of a loop: the break statement. There is one way

to quickly jump to the next loop iteration: the continue

statement.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 33 (56)

Statements (part 3, for, while, do-while, break, and continue statements)

• for statements
A for statement has the following form:

for(expression1;expression2;expression3)

body_statement

It is equivalent to
{

expression1;

loop: if((expression2) == 0) goto end;

body_statement

next: expression3;

goto loop;

end: ;

}

• while statements
A while statement has the following form:

while(expression)

body_statement

It is equivalent to

{

loop: if((expression) == 0) goto end;

body_statement

next: goto loop;

end: ;

}

• do-while statements
A do-while statement has the following form:

do

body_statement

while(expression);

It is equivalent to

{

loop: body_statement

next: if((expression) != 0) goto loop;

end: ;

}

Each loop statement will get its own private label names. A break statement inside the body of a loop statement

amounts to a goto end;, i.e., it forces an exit of the loop statement. A continue statement inside the body of a

loop statement amounts to a goto next;, i.e., the remaining statements of the body of the loop are skipped.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 34 (57)

Statements (part 4, switch statements)

• labeled statements
All statements can be labeled, i.e., they can start with a

label. There are three forms of a labeled statement:

label_name: statement

case const_expression: statement

default: statement

The first form is used by go to statements. The other

two are used by switch statements.

• switch statements
A switch statement has the form:

switch(int_expression)

body_statement

It is usual, but not necessary, for body_statement to

be a compound statement. The switch statement works

as follows. First, int_expression is evaluated. If its

value matches the const_expression value of one of

the case statements, the program jumps to that state-

ment. If none of the cases match, and if there is a de-

fault label, the program jumps to the corresponding de-

fault statement. Otherwise, the program skips the entire

switch statement. A break statement transfers execution

to the end of the switch statement. The following code

presents an example of a switch statement:

switch(c)

{

case 't':

k = 1;

do_t();

break; // terminate the switch

default: // the default can be anywhere

k = 2;

break; // terminate the switch

case 'z': // no break; do next statements

case 'x':

do_x(); // no break; do next statements

case 'X':

k = 3;

break; // terminate the switch

}

The following code is valid but a bit weird (the switch

can be replaced by an if statement):

for(i = j = 0;i < 10;i++)

switch(i % 3)

case 1: j += i;

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 35 (58)

Functions (part 1, prototypes)

A function definition is composed of two parts, a function header, which specifies the function name, its return type,

and its arguments and their types, and a function body, which must take the form of a compound statement. A

function declaration (a so-called function prototype) is just the function header, followed by a semicolon, and possibly

preceded by the keyword extern.

It is not possible to define a function inside another function. Just like variables, it is possible to declare functions at

the beginning of a compound statement.

The modern form of the header of a function (there exists an older form, but nowadays no one uses it) has the

following form

qualifier type function_name(parameter_declarations)

The qualifier may be absent. The parameter_declarations may either be void, if the function does not

take any arguments, or be composed by one or more individually declared arguments (type and name), separated by

comas. The following are examples of function prototypes (function headers terminated by a semicolon):

int main(void);

int main(int argc,char **argv); // same as int main(int argc,char *argv[]);

extern double sqrt(double x);

static int F(int n);

inline static double sqrt_2(void);

(Actually, it is possible to omit the argument names in function prototypes, but we prefer to include them, as their

name may shed some light about what they stand for.)

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 36 (59)

Functions (part 2, parameters)

The parameters of a function behave (in the function

body) as if they were ordinary variables, i.e., as if they

had been declared and initialized at the very beginning

of the compound statement that constitutes the function

body. They are passed to the function by value, i.e.,

a copy of each argument is made when the function is

called. Thus, changes to the function arguments inside

the function, which is allowed, are made on the copy.

For example, the call swap(x,y) to the function

void swap(int x,int y)

{

int tmp = x;

x = y;

y = tmp;

}

will exchange x with y only inside the swap function.

To actually reflect the exchange outside of this function,

in C one has to use pointers and pass to the (modified)

function the addresses of what we want to exchange. In

this case, the function call becomes swap(&x,&y) and

the function becomes

void swap(int *x,int *y)

{

int tmp = *x;

*x = *y;

*y = tmp;

}

Note that since the name of an array is a pointer to its first element, in the case of arrays what is passed to the

function is a pointer. So, arrays are automatically passed by reference. No copy of the entire array is made. On

the other hand, structures and unions are passed by value, so if you put an array inside a structure you can actually

pass (in disguise) an array by value to a function.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 37 (60)

Functions (part 3, qualifiers)

It is possible to declare that a function is static. This means that its name is only known to the current file being

compiled. A function with the same name can be defined in another source code file. It is very bad practice to have

static functions (or one non-static and the others static) with the same name in different source code files. If the

source code of a program is distributed among several source code files, using a static function is a great method to

hide it from the rest of the source code (for example, to make sure that it is not used inappropriately).

It is also possible to declare that a function is inline. This means that the compiler will try to replace all calls to

the function by copies of its code. The program will be somewhat larger, as the function code may appears in several

places, but it will also be faster, as there will be no function call overhead. If the function body is too large, the

compiler may silently refuse to inline a function.

The function called main is the entry point of the program. It can be defined to either have no arguments, as in

int main(void);

or it can be defined to have two arguments, as in

int main(int argc,char **argv); // same as int main(int argc,char *argv[]);

In the second case, the first argument is the number of command line arguments with which the program was invoked

and the second is an array of pointers to strings with the text of the arguments. For example:

#include <stdio.h>

int main(int argc,char **argv)

{ // this program prints its arguments, one per line

for(int i = 0;i < argc;i++) // definition of a variable anywhere (a la C++) is a c99 feature

printf("%s\n",argv[i]); // compile this using "cc -Wall -O2 -std=c99 main.c"

return 0;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 38 (61)

Functions (part 4, variable number of arguments)

It is possible for a function to have a variable (i.e., optional) number of arguments. It is the responsibility of the

programmer to determine how many arguments were actually provided in every function call. There exists a standard

mechanism (c.f. stdarg.h) to fetch the value of the next variable argument given its type. The programmer has to

know the type of the argument. For example, this can be provided by a previous argument (as done, for example, in

the printf function; see next slide).

A function has a variable number of arguments if its last argument (the optional part) is specified as It must

have at least one standard argument. The following code illustrates how a variable number of arguments is specified

and used (in this example all extra arguments all integers, with a special value to signal the end):
#include <stdio.h>

#include <stdarg.h>

int sum(int terminator, ...)

{

va_list a; // standard way to access the extra arguments

int sum,n;

va_start(a,terminator); // the extra arguments start after the terminator argument

for(sum = 0;;sum += n)

if((n = va_arg(a,int)) == terminator) // get the next int from the argument list

break;

va_end(a);

return sum;

}

int main(void)

{

printf("%d\n",sum(-1,3,4,7,3,-1)); // should print 17 (3+4+7+3)

return 0;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 39 (62)

Standard library functions

The C language comes equipped with a relatively large set of predefined functions, declared in so-called header files,

and stored in library archives. Among them are functions to read and write data, declared in stdio.h, such as

int printf(const char *format, ...); // write formatted data

int scanf(const char *format, ...); // read formatted data

FILE *fopen(const char *path, const char *mode); // open a file

int fclose(FILE *fp); // close a file

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream); // raw read

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream); // raw write

int fprintf(FILE *stream, const char *format, ...); // formatted write

functions to allocate and free memory, and to terminate a program, declared in stdlib.h, such as

void *malloc(size_t size); // allocate memory

void free(void *ptr); // free memory

void *calloc(size_t nmemb, size_t size); // zero-allocate memory

void *realloc(void *ptr, size_t size); // resize an allocation

void exit(int status); // terminate

and functions to compute transcendental mathematical function, declared in math.h, such as

double sqrt(double x);

double sin(double x);

double cos(double x);

Use the help system of your computer (man command on GNU/Linux), to get a full description of what a given

function does. This web page, which has links to documents describing in full the GNU implementation of the C

standard library functions, is also quite useful.

Your mother was a punch card reader and your father smelt of static C libraries.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 40 (63)

http://www.gnu.org/software/libc/manual/

Coding style

Some advice:

• use a consistent coding style; in particular, always indent properly your code,

• do not put too much stuff in a single function,

• use reasonable function and variable names (are you a camelCase fan or a snake case fan?),

• don’t comment obvious code,

• explain, with a comment, each clever trick used in the program (see, for example, the explanation of what the

expression (d+1)|1 does in the factor.c program),

• try very hard not to write code what would be admired and envied in the international obfuscated C code contest,

• the C programming language, the representation of numbers, and the memory layout of data can be abused to

produce plausible deniability bugs in a program, as illustrated in The Underhanded C Contest, so, don’t do it,

and

• try very hard not to be like the guy in the three xkcd cartoons on the next page.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 41 (64)

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case
http://www.ioccc.org/
http://www.underhanded-c.org/
http://xkcd.com

Coding style (xkcd cartoons)

Code Quality (spoiler)

It’s like you tried to define a formal grammar based on fragments of a
raw database dump from the QuickBooks file of a company that’s about to

collapse in an accounting scandal.

Code Quality 3 (spoiler)

It’s like a half-solved cryptogram where the solution is a piece
of FORTH code written by someone who doesn’t know FORTH.

Code Quality 2 (spoiler)

I honestly didn’t think you could even USE emoji in variable
names. Or that there were so many different crying ones.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 42 (65)

https://m.xkcd.com/1513/
https://www.explainxkcd.com/wiki/index.php/1513:_Code_Quality
https://m.xkcd.com/1833/
https://www.explainxkcd.com/wiki/index.php/1833:_Code_Quality_3
https://m.xkcd.com/1695/
https://www.explainxkcd.com/wiki/index.php/1695:_Code_Quality_2

Three more xkcd cartoons

Goto (no spoiler)

Neal Stephenson thinks it’s cute to name his labels ’dengo’.

Bad code (spoiler)

“Oh my God, why did you scotch-tape a bunch of hammers together?”
“It’s ok! Nothing depends on this wall being destroyed efficiently.”

Good code (spoiler)

You can either hang out in the Android Loop or the HURD loop.

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 43 (66)

https://m.xkcd.com/292/
https://www.explainxkcd.com/wiki/index.php/292:_Goto
https://m.xkcd.com/1926/
https://www.explainxkcd.com/wiki/index.php/1926:_Bad_Code
https://m.xkcd.com/844/
https://www.explainxkcd.com/wiki/index.php/844:_Good_Code

Some useful web sites

Here is a list of some useful web sites related to C and C++ (in random order):

• MIT OpenCourseWare: for a second opinion (about C and C++)

• C tutor: for those wishing to learn C

• online compiler and debugger for C and C++: for those with some experience in C or C++

• Interactive C tutorial: for an interactive way of learning C

• project Euler: some programming problems

• Google Code Jam: more programming problems

� glibc manual: for those wishing to use the (GNU version of the) standard C library

� C standard: for those that what to know every detail

� common weakness enumeration, in particular, top 25 most dangerous software weaknesses: for those that want

to become good programmers

� C reference: a gentle summary of the C programming language

� C tutorial: a tutorial that explain the C programming language using examples

� another C tutorial: another C tutorial

� C tutor: write and execute simple C code in the browser

� C++ reference: a gentle summary of the C++ programming language

� C++ tutorial: a tutorial that explain the C++ programming language using examples

� another C++ tutorial: another C++ tutorial

� C++ tutor: write and execute simple C++ code in the browser

� Google’s C++ tutorial: Google’s way of teaching C++

� Google’s C++ style guide: guidelines abount how to write and format C++ code

AED 2022/2023
Tomás Oliveira e Silva

Home P.02 JT.02I page 44 (67)

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-s096-introduction-to-c-and-c-january-iap-2013/
http://pythontutor.com/c.html#mode=edit
https://www.onlinegdb.com
https://www.learn-c.org/
https://projecteuler.net/
https://codingcompetitions.withgoogle.com/codejam
https://www.gnu.org/software/libc/manual/
https://web.archive.org/web/20181230041359/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://cwe.mitre.org/index.html
https://cwe.mitre.org/data/definitions/1350.html
https://en.cppreference.com/w/c
https://www.tutorialspoint.com/learn_c_by_examples/index.htm
https://www.w3schools.com/c/index.php
https://pythontutor.com/c.html#mode=edit
https://en.cppreference.com/w/
https://www.tutorialspoint.com/cplusplus/index.htm
https://www.w3schools.com/cpp/default.asp
https://pythontutor.com/cpp.html#mode=edit
https://developers.google.com/edu/c++/
https://google.github.io/styleguide/cppguide.html

The C programming language (exercises)

— P.02 —
To compile C and C++ programs, Windows 10 and Windows 11 users should install the Windows Subsystem for Linux.

As an alternative, they can install instead an Integrated Development Environment (IDE), such as Visual Code Studio

or Eclipse. GNU/Linux and MacOS users should be fine. Nonetheless, in order to be able to compile 32-bit executables,

GNU/Linux users should install the build-essential and the gcc-multilib packages (these are for the ubuntu

distribution, for other distribution their names may be different). Study carefully the provided C source code.

Summary:

• How to compile and run a program (GNU/Linux)

• How to manage archives

• The “Hello World” program

• Program to print some numbers

• Program to print the size in bytes of the fundamental data types

• Computation of Fibonacci numbers

• Printing all command line arguments

• Integer arithmetic pitfalls

• A more elaborate example (integer factorization)

• Final example (rational approximation)

• gdb and valgrind

• Homework

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 1 (68)

https://msdn.microsoft.com/en-us/commandline/wsl/about

How to compile and run a program (GNU/Linux)

A C program is composed by one or more .c source files and by zero or more .h files (included by the .c source

files). To compile the program under GNU/Linux, the following command should be used:

cc -Wall -O2 source_files... -o executable_name -lm

Replace source_files... by the list of the .c source files, and replace executable_name by the name you desire

to give to the executable file. If -o executable_name is omitted from the command line, the executable will get

by default the name a.out. The option -Wall instructs the compiler (cc) to give you a warning whenever you

use dubious C code (such as using an uninitialized variable). The option -O2 instructs the compiler to optimize the

program for speed. The linker option -lm, that must be placed at the end, instructs the compiler to link the program

with the math library (so that functions like sin() and the like are properly taken care of). For example, if your

program is composed by the files source1.c, source2.c, if they include the file source.h, and if you desire the

executable to be named prog, the command should be

cc -Wall -O2 source1.c source2.c -o prog -lm

and you can run it on a terminal using the command

./prog

You can automate the process of compiling the program using a makefile. Put the text (beware of the tab, denoted

below by an arrow)

prog: source1.c source2.c source.h

−−−−−→cc -Wall -O2 source1.c source2.c -o prog -lm

in a file named either Makefile or makefile. Running the command

make

will recompile your program if at least one of the source files has changed since the last compilation.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 2 (69)

How to manage archives

All source code files for this class, together with the makefile needed to (re)compile all programs, can be found in

the compressed tar archive P02.tgz. On a GNU/Linux system, to extract the files it holds on a terminal, go to the

directory (folder) where you want to extract the files (use the cd command to do this), and then use the command

tar xzvf P02.tgz

to extract the files. They should appear in a new directory named P02. To create an archive use the command

tar czvf name_of_your_archive.tgz list_of_files_and_directories_to_put_in_the_archive

For more information about a command, just run the man command. For example, to get more information about

the tar program, run

man tar

The “Hello World” program

The hello.c file contains the C code
/*

** Hello world program

*/

#include <stdio.h>

int main(void)

{

puts("Hello world!");

return 0;

}

Compile it and run it. Modify the code to print “Hello X”, where X is your name.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 3 (70)

Program to print some numbers

The following program (table.c) prints the first ten positive integers, their squares, and their square roots.
#include <math.h>

#include <stdio.h>

void do_it(int N)

{

int i;

printf(" n n*n sqrt(n)\n");

printf("-- --- -----------------\n");

for(i = 1;i <= N;i++)

printf("%2d %3d %17.15f\n",i,i * i,sqrt((double)i));

}

int main(void)

{

do_it(10);

return 0;

}

Compile and run it. Modify the program to print the sine and cosine of the angles 0, 1, 2, . . . , 90 (in degrees) and

to place the output in a file named table.txt.

Hints:

• Use the help system (on GNU/Linux use the command man) to study how the formatting string of the printf

function is specified. Study also the functions fopen, fclose and fprintf.

• The argument of the sin and cos functions are in radians; the value of π is given by the symbol M_PI, which

is defined in math.h. To convert from degrees to radians multiply the angle by M_PI/180.0.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 4 (71)

Program to print the size in bytes of the fundamental data types

The file sizes.h contains the code
#ifndef SIZES_H

#define SIZES_H

void print_sizes(void);

#endif

The file sizes.c contains the code
#include <stdio.h>

#include "sizes.h"

void print_sizes(void)

{

printf("sizeof(void *) %d\n",(int)sizeof(void *)); // size of any pointer

printf("sizeof(void) %d\n",(int)sizeof(void));

printf("sizeof(char) %d\n",(int)sizeof(char));

printf("sizeof(short) %d\n",(int)sizeof(short));

printf("sizeof(int) %d\n",(int)sizeof(int));

printf("sizeof(long) %d\n",(int)sizeof(long));

printf("sizeof(long long) ... %d\n",(int)sizeof(long long));

printf("sizeof(float) %d\n",(int)sizeof(float));

printf("sizeof(double) %d\n",(int)sizeof(double));

}

The file main.c contains the code
#include "sizes.h"

int main(void)

{

print_sizes();

return 0;

}

Study the way the program code is split among the three files. Compile and run the program. On a 64-bit machine,

add -m32, -mx32, or -m64 to the compilation flags and check if any of the sizes reported by the program changes.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 5 (72)

Computation of Fibonacci numbers

The program in the file fibonacci.c computes Fibonacci numbers using the four different methods briefly described

in this slide. Compare the code of this file with the one presented in the slide.

Compile and run the program. Make graphs of the execution times of each of the four functions reported by the

program. Explain why the function F_v1 is extremely slow (hint: compare the execution time of that function with

the value it returns). Estimate how long your computer will take to compute F60 using the F_v1 function.

The code in the file fibonacci_with_a_macro.c is almost identical to the code in the file fibonacci.c. In the

original code, inside the for loop of the main function, there are four lines of code, with several statements, that

are almost identical. In the modified code they are replaced by a single macro definition and four macro invocations.

This guarantees consistency. Use, for example,
vim -d fibonacci.c fibonacci_with_a_macro.c

or
meld fibonacci.c fibonacci_with_a_macro.c

to see the differences between the two files. Note that inside a macro replacement text, a single # stringifies the next

token (i.e., converts it into a string), and ## concatenates the tokens on its left and right hand sides into a single

token, so that, for example, dt ## 1 becomes the single token dt1 (an identifier), and not the two tokens dt (an

identifier) and 1 (a number).

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 6 (73)

Printing all command line arguments

The following program (command_line_arguments.c) prints all its command line arguments.
#include <stdio.h>

int main(int argc,char *argv[argc])

{

for(int i = 0;i < argc;i++)

printf("argv[%2d] = \"%s\"\n",i,argv[i]);

return 0;

}

Study it with care. Modify it to print after each argument the integer it represents (if any). It is possible to convert

a string to an integer using the atoi function; it does not perform any checks on its input. The more advanced

strtol can do that, but it is harder to use. Investigate how you can use it.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 7 (74)

Integer arithmetic pitfalls

The following program (integer_arithmetic_pitfalls.c) contains a small amount of code that performs some

simple integer operations.
#include <stdio.h>

int main(void)

{

unsigned int i = 1;

int j = -1;

int k = -2147483648;

printf("original i = %u\n",i);

printf("original j = %d\n",j);

printf("original k = %d\n",k);

// compare i with j

if(i > j)

printf("i > j is true\n");

else

printf("i > j is false\n");

// replace k by its absolute value and print the result

if(k < 0)

k = -k;

printf("absolute value of k = %d\n",k);

return 0;

}

Before compiling and executing the program, in your opinion what should the output of the program be? Now,

compile and run it. Were your predictions correct? If so, congratulations. If not, explain why not!

i > j is false

absolute value of k = -2147483648

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 8 (75)

A more elaborate example (integer factorization)

The following program (factor.c) computes the fac-

torization of an integer.
#include <stdio.h>

#include <stdlib.h>

int factor(int n,int prime_factors[16],int multiplicity[16])

{

int d,n_factors;

n_factors = 0;

for(d = 2;d * d <= n;d = (d + 1) | 1) // d = 2,3,5,7,9,...

if(n % d == 0)

{

prime_factors[n_factors] = d; // d is a prime factor

multiplicity[n_factors] = 0;

do

{

n /= d;

multiplicity[n_factors]++;

}

while(n % d == 0);

n_factors++;

}

if(n > 1)

{ // the remaining divisor, if any, must be a prime number

prime_factors[n_factors] = n;

multiplicity[n_factors++] = 1;

}

return n_factors;

}

int main(int argc,char *argv[argc])

{

int i,j,n,nf,f[16],m[16]; // 16 is more than enough...

for(i = 1;i < argc;i++)

if((n = atoi(argv[i])) > 1)

{

nf = factor(n,f,m);

printf("%d = ",n);

for(j = 0;j < nf;j++)

if(m[j] == 1)

printf("%s%d",(j == 0) ? "" : "*",f[j]);

else

printf("%s%d^%d",(j == 0) ? "" : "*",f[j],m[j]);

printf("\n");

}

return 0;

}

Study the program. Compile and run it (for exam-

ple, ./factor 30). Why is the program slow when

n is a prime number larger than 463392, such as

2147483647? (Hint: arithmetic overflow in the signed

integer data type.) Get rid of that programming bug.

Homework challenge: Modify the program so that

it outputs all possible divisors of n. [Hint: there are

(1+m[0])*(1+m[1])*...*(1+m[nf-1]) divisors.]

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 9 (76)

Final example (rational approximation)

The program in the file rational_approximation.c computes the best rational approximation to a given real

number using two different approaches. One is based on a slow but straightforward brute force search for the best

solution, and the other (fast, but not the fastest possible!) is based on some interesting mathematical properties of

best rational approximations.

Study the program. Pay attention to the data types that are defined and how preprocessor directives can enable

or disable (at compile time) parts of the program. Try to understand how the (slow) brute force search works.

Attempting to understand the mathematics behind the fast method lies outside the scope of AED (for the curious, it

uses a mix of a so-called Stern-Brocot tree and of a continued fraction expansion).

Compile the program and run it. Confirm that the two methods give the same result. Experiment with other real

numbers. For example, if the line “x = M_PI;” is replaced by the line “x = exp(1.0);” or by the line “x = M_E;”

the program computes best rational approximations to e (base of the natural logarithms).

Modify the program to count and print, if DEBUG is negative, the number of tests e < best_e that are performed

by each of the two functions. Do this for several interesting real numbers, such as π, e,
√

2, and, say, (1 +
√

5)/2.

What can you say about the growth of the number of tests as a function of max_den for each of the two functions?

Measure approximately the time it takes your computer to compute
best_rational_approximation_slow(M_PI,100000000u)

and to compute
best_rational_approximation_fast(M_PI,100000000u)

Try also other values of the second argument and make graphs of the execution time versus this second argument.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 10 (77)

gdb and valgrind

Three of the programs stored in the archive P02.tgz, namely binary_search.c, count_words.c, and primes.c,

contain errors or memory leaks. Correct them.

The count_words program requires the name of a text file as argument. In the P02.tgz archive one such file is

supplied: SherlockHolmes.txt. To run the program just do (on a terminal)
make count_words

./count_words SherlockHolmes.txt

As a bonus, you may also read some of the Sherlock Holmes stories. . .

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 11 (78)

Homework (optional but recommended, part I)

Problem 1: Write a program that finds all integers n that have the following characteristics:

• the integer has exactly 10 base-10 digits,

• the integer cannot have repeated digits (so all digits must appear exactly once), and

• for k = 1, 2, . . . , 10, the integer formed by the first k most significant base-10 digits of n must be divisible

by k.

For example, n cannot be 1295073846 because, among other problems, 1295 is not divisible by 4 (but 1 is divisible

by 1, 12 is divisible by 2 and 129 is divisible by 3.

How about other bases? On a 64-bit processor with an unsigned long data type of 64 bits, it should be possible

to go up to base 16.

Problem 2: The triangular numbers are the integers 0, 1, 3, 6, 10, They are given by the formula k(k+1)/2

for k = 0, 1, 2, 3, (It is more usual to exclude the number 0 from this list, but for our purposes it is more

convenient to include it.) Write a program that, for N equal to 100, 1000, 10000, 100000, and 1000000,

computes how many integers in the interval [0, N] are

• the sum of exactly two triangular numbers;

• the sum of exactly three triangular numbers.

Historical remark: the famous mathematician Carl Friedrich Gauss proved that n = 4+4+4.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 12 (79)

Homework (optional but recommended, part II)

Problem 3 [the minimum overlap problem]: Let n be a positive integer and let A = { a1, a2, . . . , an } be a

subset of the set { 1, 2, . . . , 2n } with exactly n elements, and let B = { b1, b2, . . . , bn } be the complementary

set. For example, for n = 3, we may have

A = { 1, 4, 5 }
and

B = { 2, 3, 6 }.
Let Mn(A, k) be the number of solutions of ai − bj = k, 1 6 i, j 6 n, and let Mn(A) be the largest value

of Mn(A, k). For example, for the above example we have 9 differences:

a1 − b1 = −1 a1 − b2 = −2 a1 − b3 = −5

a2 − b1 = +2 a2 − b2 = +1 a2 − b3 = −2

a3 − b1 = +3 a3 − b2 = +2 a3 − b3 = −1

It follows that

k −5 −2 −1 +1 +2 +3

M3(A, k) 1 2 2 1 2 1

and, finally, that M3(A) = 2. The minimum overlap problem asks, for a given n, what is the smallest value of

Mn(A), i.e., it asks for the value of Mn = minAMn(A). It is known that

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mn 1 1 2 2 3 3 3 4 4 5 5 5 6 6 6

Your task is to confirm these values and to compute at least one more. I know them up to n = 25.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.02I P.02 page 13 (80)

https://en.wikipedia.org/wiki/Minimum_overlap_problem

The C++ programming language

— T.03 —

Summary:

• My first C++ program

• Overview of the C++ programming language

• Some differences between C and C++

• Classes

• Templates

• Exceptions

• Other stuff (not explained in this course)

• Exercises

[Remark: C++ is a very large and complex programming language (some say∗

that it is far to much complex; see the right-hand side image). For AED we will
only need a relatively small subset of what it has to offer. The rest, although
important, will not even be mentioned in these slides.]

∗ “When its 3 A.M., and you’ve been debugging for 12 hours, and you en-
counter a virtual static friend protected volatile templated function pointer,
you want to go into hibernation and awake as a werewolf and then find the
people who wrote the C++ standard and bring ruin to the things that they
love.” (Excerpt from The Night Watch, by James Mickens).

Recommended bibliography for this lecture:

• Thinking in C++. Volume One: Introduction to Stan-
dard C++, Bruce Eckel, second edition, Prentice Hall,
2000.

• Thinking in C++. Volume Two: Practical Program-
ming, Bruce Eckel and Chuck Allison, Prentice Hall, 2003.

• Online reference documentation about C++

• C++ Annotations, Frank B. Brokken, 2015.

• C++ Primer, Stanley B. Lippman, Josée Lajoie, and Bar-
bara E. Moo, fifth edition, Addison-Wesley, 2013.

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 1 (81)

https://www.usenix.org/system/files/1311_05-08_mickens.pdf
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://www.cplusplus.com/reference/
http://cppannotations.sourceforge.net/annotations/html/

My first C++ program

The “hello world” program:

1 // Hello world program

2

3 #include <iostream>

4

5 int main(void)

6 {

7 std::cout << "Hello world!\n";

8 return 0;

9 }

The line numbers on the left are not part of the code.

Explanation:

� Line 1 is a comment. The comment starts with // and ends
at the end of the line; /* . . . */ comments are also allowed
in C++.

� Line 3 instructs the compiler to replace that line by the con-
tents of the file named iostream (one of the files of the
C++ compiler’s standard libraries); like the C compiler, the
C++ compiler also uses a preprocessor.

� Lines 5 to 9 declare and define a function named main, which
is the entry point of the program (the entry point of the
program is always called main) and, in this case, takes no
arguments and returns an integer.

� Lines 6 to 9 constitute the body of the function.

� Line 6 starts a block of code; code blocks start with a {.

� Line 7 sends the string "Hello world!\n" to the cout

stream specified in the std namespace (the standard out-
put stream).

� Line 8 forces a return from the main function with a return
value of 0 (since main is the entry point of the program,
this actually specifies the error code of the entire program;
0 means all is well, non-zero means some error occurred).

� Line 9 ends a block of code; code blocks end with a }.

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 2 (82)

Overview of the C++ programming language

The C++ programming language is a large and complex programming language. It is a superset of the C language

(hence the name C++). Most programs written in C are also valid C++ programs. The C++ language has the

following features, which are not present in the C language (this list is not exhaustive):

• It is possible to pass values by reference to a function, without making the use of pointers explicit.

• It is possible to define functions with the same name but with different lists of arguments (function overloading).

• The last arguments of a function may have default values (great if one wants to add a new parameter to a

function without modifying the code already written that calls the function).

• One can create a data type and the functions that manipulate it (a class) in a much more elegant way. It is

even possible to make the standard arithmetic operators, such as + and -, work with arguments of the new data

type. It is possible to hide the internal details of the data type, so that we can change them without affecting

the parts of the program that use the data type.

• One can create so-called name spaces to better control which symbols (such as variables and function names)

are visible in each part of our code.

• It is possible to create templates of functions and classes (generic programming).

• It is possible to handle exceptions in a disciplined way (in C one would have to use goto statements or, in some

cases, the ugly setjump and longjump functions)

It is customary to use the extension .cpp (meaning C-plus-plus) in the names of the source files of a C++ program

(.cc, .cxx, .c++, and even .C, are also sometimes used).

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 3 (83)

Some differences between C and C++ (part 1)

C++ allows arguments to be passed by reference. This is accomplished by placing an & before the argument name.

In the following code, we show on the left how this has to be done in C and on the right we show how this can be

done in C++ (we may also use the left version, but the right one is more elegant, as there are no explicit pointer

dereferences):

// C; called as follows: swap(&var1,&var2); // C++; called as follows: swap(var1,var2);

void swap(int *x,int *y) void swap(int &x,int &y)

{ {

int tmp = *x; int tmp = x;

*x = *y: x = y:

*y = tmp; y = tmp;

} }

C++ allows functions with the same name but different argument lists to coexist. For example, the following code

is valid in C++:

int square(int x) { return x * x; }

double square(double x) { return x * x; }

The code square(1) will call the first function, because its argument is an int, and the code square(1.0) will

call the second function, because its argument is a double. It is, however, illegal to have two functions with the

same name and with the same argument list (same number of arguments and same types), but with different return

types. For example, the function

double square(int x) { return double(x) * double(x); } // double(x) does the same as (double)x

cannot coexist with the first function defined above.

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 4 (84)

Some differences between C and C++ (part 2)

C++ allows the specification of default values for the last arguments of a function. This is done by providing

initializations (with the default values) in the argument list of the function. It is actually better to put the initializations

in the function prototype, as in the following example:

int f(int x,int y = 2,int z = 3); // function prototype (usually placed in a header file)

int f(int x,int y,int z) // actual definition of the function

{

return x + 2 * y + 3 * z;

}

In this case we not only can call the f function with three arguments as usual, but we can also call it with two (the

third, z, will get the value 3, as specified in the function prototype), and with one (the second and third will get,

respectively, the values 2 and 3). [Warning: this feature of the C++ language should be used with extreme care

when the function is also overloaded.]

C++ allows the definition of variables in almost any place inside a compound statement. In (old) C, that is only

allowed at the beginning of a compound statement. The following code is valid in C++ (it is also valid in modern C

dialects):

int i; // i defined here

for(int j = 0;j < 10;j++) // j defined here; it will cease to exist at the end of the for cycle

{

i = 2 * j;

int k = i + 2 * j; // k defined here (definition after a statement is allowed)

cout << k; // print the value of k

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 5 (85)

Some differences between C and C++ (part 3)

In C++ it is possible to control the visibility of symbols by placing them is a name space. In the following code we

define two name spaces and put in each of them a global variable and a function (same names but different name

spaces; of course this is not recommended but sometimes it cannot be avoided):

namespace NEW

{

static int t_bytes;

int f(int x) { return 2 * x; }

}

namespace OLD

{

static int t_bytes;

int f(int x) { return 3 * x; }

}

To get a specific variable or function, place the name of the name space followed by :: before the variable or function

name. For example, NEW::t_bytes is the t_bytes of the NEW name space. It is also possible to say

using NEW::t_bytes;

and from that point on t_bytes will be synonymous with NEW::t_bytes (or course, for this to work no symbol

with the name t_bytes can already exist in the current name space). It is also possible to import all symbols from

a name space, thus making all of them available without the name_space:: prefix. For example,

using namespace OLD;

will make t_bytes a synonym of OLD::t_bytes and f a synonym of OLD::f.

The std name space is reserved for standard library functions.

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 6 (86)

Some differences between C and C++ (part 4)

It is possible to call C functions from a C++ program (the calling conventions are the same, as are the fundamental

data types), so that is a question of using the proper function names. This is actually a problem that has to be

solved, because the function name that the compiler uses internally is not simply the name of the function: it has

also to encode the types of its arguments (this has to be done because a function may be overloaded). The internal

names are said to be “mangled.” C functions do not have mangled names, so the compiler has to be told to use (or

generate) unmangled function names. The following example shows how this is done:

extern "C" int f(int x);

extern "C"

{

int g(int x);

int h(int x);

}

Type casts, in C++, although they can be done just as in C, should be done in the form of a function call, as

illustrated in the following code:

int i = (int)1.0; // a C-style cast (try not to use)

int j = int(1.0); // a C++-style cast (use)

This allows the compiler to better check if the cast makes sense.

In C++, use nullptr instead of NULL. It serves the same purpose but its use is safer, because in C++ NULL is

defined to be the constant 0 (and not a pointer to void with the value 0 as it is in C).

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 7 (87)

Some differences between C and C++ (part 5)

Memory can be allocated with the new operator and deallocated with the delete operator. When used to allocate

an instance of a class new calls automatically its constructor. Likewise, delete calls its destructor. The argument

of the new operator is a data type. Its return value is a pointer to that type. Note, however, that as in C when

one specifies an array what one gets is a pointer to its first element (the constructor of the element type is called

for each one of elements of the array). The argument of the delete operator should be a pointer received from

the new operator; if it is not all hell can break loose. The delete operator does not have a return value. For array

types, the operator delete[] calls the destructor for each of the elements of the array (the delete operator calls

the destructor only for the first element).

The following example shows how new and delete can be used.

int *p_i = new int; // get memory to an integer

*p_i = 3; // give it the value 3

delete p_i; // free its memory

p_i = new int(10); // get memory to another integer at initialize it with the value 10

double *p_d = new double[100]; // get memory for an array of 100 doubles

delete[] p_d; // free its memory

class abc; // class fully declared elsewhere

abc *pc = new abc; // pointer to an instance of class abc

If there is not enough memory the new operator throws a std::bad_alloc exception.

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 8 (88)

Classes (part 1)

Roughly, a C++ class is the combination of a C structure with a set of functions that manipulate the structure. It

is a great way to compartmentalize our code, safely hiding the details of how the structure and associated functions

are actually implemented. A class is declared just like a structure, but with some extra ingredients:

• while the members of structures have to be data types, members of classes may also be functions.

• when an instance (an object) of a class is created, a constructor member function is called to initialize the data

fields of the instance.

• when an instance of the class is destroyed, a destructor member function is called to do any necessary cleanup

work.

• some of the members of the class, be they data fields or functions, can be made public, i.e., visible to the entire

program, or they can be made private, i.e., visible only by the code that implements the class.

• some data fields may act like global variables, existing only one instance of them irrespective of the number of

instances of the class that were created (in C one would have to use a separate global variable to get the same

effect; in C++ it is an integral part of the class).

A class with name CLASS_NAME is declared as follows (the order of the public and private parts is arbitrary):
class CLASS_NAME

{

private: // private members part

// put declarations (of functions) and definitions (of functions or data fields) here

public: // public members part

// put declarations (of functions) and definitions (of functions or data fields) here

};

We may have several private and public parts. Class member functions may be defined outside of the class declaration.

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 9 (89)

Classes (part 2)

The following example presents the code of a very simple class:

class dot

{

private:

static int n_dots; // counts the number of dots created

double d_x; // x coordinate

double d_y; // y coordinate

public:

dot(double x,double y) { n_dots++; d_x = x; d_y = y; } // constructor

~dot(void) { n_dots--; } // destructor

double x(void) { return d_x; } // definition

double y(void); // declaration (prototype)

int number_of_dots(void) { return n_dots; } // definition

};

double dot::y(void) { return d_y; } // definition

int main(void)

{

dot d(0.0,0.0); // create a dot; almost the same as "dot d = dot(0.0,0.0);"

double x = d.x(); // get the x coordinate of d

// more code

}

Note that the name of the constructor function is the name of the class and that the name of the destructor is the

name of the class preceded by ~. Note also that inside member functions the names of the data members of the class

can be used without reference to the class instance (see discussion of the this pointer in the next slide).

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 10 (90)

Classes (part 3)

When a member function of a class is called it receives an extra hidden argument named this. This argument is a

pointer to the memory area that holds the data of the class instance that is being used. For example, the member

function dot::y of the previous slide, shown on the left hand side of the following code, is conceptually transformed

by the compiler into the code shown on the right hand side:

// C++ code // possible C implementation

double dot::y(void) double dot_y_implementation(dot * const this)

{ {

return d_y; return this->d_y;

} }

We can use the this pointer in our code (in non static member functions!) without declaring it.

The syntax used to access struct data fields is also used to access class data members and class member

functions. For example, if d_x had been made public in the previous slide, we could have used it as follows:

dot d;

d.d_x = 3.0; // set the d_x field of d to 3

Since it was made private that is not allowed, and we need to provide member functions to set and get its value

(if we want to make that data member available to the rest of the program). Calling a member function is done in

the same way. For example,

double y = d.y();

will call the public member function dot::y with the this pointer set to &d.

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 11 (91)

Classes (part 4)

The following example shows how to

• use arguments and attributes with the same name (the this pointer points to the object);

• how to define and use an arithmetic operator (in this case the + operator); and

• how to use I/O streams in the new class (because the left-hand side argument of the << arithmetic operator has

a different type, we place the relevant code outside of the class body.

using namespace std;

class dot

{

private:

double x;

double y;

public:

dot(double x,double y) { this->x = x; this->y = y; }

~dot(void) { }

double get_x(void) { return x; };

double get_y(void) { return y; };

void set_x(double x) { this->x = x; };

void set_y(double y) { this->y = y; };

dot operator + (dot &d) { return dot(this->x + d.x,this->y + d.y); }

};

std::ostream & operator << (std::ostream &os,dot &d)

{

return os << "(" << d.get_x() << "," << d.get_y() << ")\n";

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 12 (92)

Templates

Templates are a way to write code in a generic way, without specifying beforehand the data types or other parameters

that will be used in a data structure or function. The idea is to write code once, and to use it many times. One

writes a template for the code, keeping some data types, and possibly other parameters, unspecified. For a function,

this is done as in the following example:

template <typename T> T f(T x)

{

return T(7) * x; // multiply x by 7; 7 is cast to type T (it must be possible to do that)

}

Here, the function template has one generic type named T (it can have more), and describes a family of functions,

named f, whose purpose it to multiply its argument by 7. (Of course this could also be done in a far simpler way,

but our purpose here is the describe how a template works.) To use the template to define an actual function, do as

follows:

int i = f<int>(3); // i = 7 * 3

double d = f<double>(5.0) // d = 7.0 * 5.0

Class templates are done similarly (here using two generic types):

template <typename T1,typename T2> class XYZ

{

private:

T1 a_member_variable_of_type_T1;

T2 a_member_variable_of_type_T2;

// ...

};

and used similarly: XYZ<int,double> a_variable_of_class_XYZ_int_double;.

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 13 (93)

Exceptions

In a program, one possible way to deal with an unexpected case (such as trying to compute the square root of a

negative number, when that was thought not to be possible to happen) is just to terminate it. In mission critical

applications that is not desirable. What one needs is a way to handle gracefully the unexpected condition (after all,

it may have been the result of memory corruption due to a very rare cosmic ray, and not the fault of the program).

C++ implements a mechanism (try–catch) that can do that. The idea is to surround the program area we want to

protect with a “safety net,” that catches these unexpected events. We put our normal code in a try block, and we

put the recovery code in one or more catch blocks. Exceptions (the unexpected events) are signaled by “throwing”

an exception, using a throw statement. The following example will make things clear:

double sqrt(double x)

{

if(x < 0.0) throw 0; // throw an integer exception with the value 0

return sqrt(x);

}

int main(void)

{

try

{

cout << sqrt(-1.0) << endl;

}

catch(int i)

{

cout << "integer exception number " << i << " caught" << endl;

exit(1);

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 14 (94)

C++ stuff not covered by these class notes

Incomplete list of important things not covered in these lecture notes (C++ is a programming language with a

extremely rich set of features):

• multiple inheritance (among other things, the virtual and friend keywords)

• lambda expressions

• the standard template library (STL)

• the Boost library

AED 2022/2023
Tomás Oliveira e Silva

Home P.03 JT.03I page 15 (95)

The C++ programming language (exercises)

— P.03 —

Summary:

• How to compile a C++ program (linux)

• The “Hello World” program

• Program to print some numbers

• Program that uses function overloading

• Program that uses a class

• Program that uses a function template

• Program that uses a class template

• Program that uses an exception handler

• Homework

AED 2022/2023
Tomás Oliveira e Silva

Home JT.03I P.03 page 1 (96)

How to compile a C++ program (linux)

A C++ program is composed by one or more .cpp source files and by zero or more .h files (included by the .cpp

source files). To compile the program under GNU/linux, the following command should be used:

c++ -Wall -O2 source_files... -o executable_name -lm

Replace source_files... by the list of the .cpp source files, and replace executable_name by the name you

desire to give to the executable file. All that was said about compiling C programs also holds for compiling C++

programs (except that now the compiler program is called c++ and not cc).

The “Hello World” program

Extract the file hello.cpp from the archive P03.tgz. Study, compile, and run the program. Compare it with the

hello.c given in the P.02 class (you can find it in the P02.tgz archive). Modify the program to print the numbers

1, 2, 3, . . . , 10.

Program to print some numbers

Extract the file table.cpp from the archive P03.tgz. Study, compile, and run the program. Compare it with the

C program given in the P.02 practical class. Modify the program to print in another column the cubic roots of the

numbers of the second column. (Hint: the function cbrt computes a cubic root.)

AED 2022/2023
Tomás Oliveira e Silva

Home JT.03I P.03 page 2 (97)

Program that uses function overloading

Extract the file overload.cpp from the archive P03.tgz. Study, compile, and run the program. Add two other

show functions to it, to print i) a char, and ii) an array of 3 integers (fixed array size). For example,
show('a');

should print
char: a

and
int a[3] = { 2,7,-1 };

show(a);

should print
array: [2,7,-1]

Test your new program.

Programs that uses a class

Extract the file person.cpp from the archive P03.tgz. Study, compile, and run the program. Set debug to 1 and

recompile and rerun the program. Is the output the same as before? Why? Change the program so that the class

person also stores the phone number of a person. The program dot.cpp also uses a class. Study it.

Program that uses a function template

Extract the file f_template.cpp from the archive P03.tgz. Study, compile, and run the program. Add another

function to the program than computes the mean of the elements of the array. The return type of that new function

should be double.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.03I P.03 page 3 (98)

Program that uses a class template

Extract the file c_template.cpp from the archive P03.tgz. Study, compile, and run the program.

Program that uses an exception handler

Extract the file exception.cpp from the archive P03.tgz. Study, compile, and run the program. Modify the value

of the special_value constant so that the exception of type int is triggered before the exception of type double

has a change to be triggered.

Homework

Add exceptions to the c_template program. (Hint: create an enumerated type with values stack_full and

stack_empty and use them as the exception values.)

AED 2022/2023
Tomás Oliveira e Silva

Home JT.03I P.03 page 4 (99)

Computational complexity
— T.04 —

Summary:

• Algorithms

• Abstract data types

• Computational complexity

• Algorithm analysis

• Asymptotic notation

• Classes of problems

• Useful formulas

• Least squares fit

• A first example

• More examples

• Computational challenge

• Exercises

Recommended bibliography for this lecture:

• Analysis of Algorithms, Jeffrey J. McConnell, second edi-
tion, Jones and Bertlett Publishers, 2008.

• The Algorithm Design Manual, chapter 2, Steven S.
Skiena, second edition, Springer, 2008.

• Introduction to Algorithms, chapters 1 and 3, Thomas H.
Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein, third edition, The MIT press, 2009.

• Análise da Complexidade de Algoritmos, chapter 1,
António Adrego da Rocha, FCA.

An algorithm is a set of finitely many rules for manipulating a finite

amount of data in order to produce a result in a finite number of steps.

— The Princeton Companion to Mathematics, section II.4 (by Jean-Luc Chabert)

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 1 (100)

Algorithms (part 1, definition) MUSE

An algorithm is a detailed description of a method to solve a given problem. To properly specify the problem it

is necessary to specify its input, which encodes the information necessary to uniquely identify each instance of the

problem, and its output, which encodes the solution to the problem. It is also necessary to specify the properties that

the output must have in order for it to be a solution to the problem for the given input (in other words, we must also

specify what the problem actually is). An algorithm is a finite sequence of instructions that explain, in painstaking

detail, how to produce a valid output (a solution to the problem) given a valid input. These instructions can be given

in a natural language, such as English, or in a form closer to how an algorithm may be actually implemented in a

given programming language (pseudocode).

An algorithm:

• must be correct, i.e., it must produce a valid output for all possible valid inputs;

• must be unambiguous, i.e., its steps must be precisely defined;

• must be finite, i.e., it must produce a valid output in a finite number of steps for all possible valid inputs (we

are not interested in “algorithms” that may take forever to produce a valid output);

• should be efficient, i.e., it should do the job as quickly as possible;

• can be deterministic, if the sequence of steps that produces the output depends only on the input, or it

• can be randomized, if the sequence of steps that produces the output depends on the input and on random

choices.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 2 (101)

https://www.youtube.com/watch?v=X8f5RgwY8CI

Algorithms (part 2, example)

The following algorithm is a possible way to sort a sequence of numbers:

Algorithm: Generic exchange sort.

Input: a sequence of n numbers a1, a2, . . . , an, with n > 0.

Output: a permutation (reordering) b1, b2, . . . , bn of the input sequence such that b1 6 b2 6 · · · 6 bn.

Steps:

1. [Copy input.] For i = 1, 2, . . . , n, set bi to ai.

2. [Deal with a special case.] If n = 1 terminate the algorithm.

3. [Are we done?] Find a pair of indices (i, j) such that i < j and bi > bj. Terminate the algorithm if such a

pair does not exist.

4. [Exchange.] Exchange bi with bj. Return to step 3.

Is the algorithm correct? Yes. For n > 1 the algorithm can only terminate when the current b sequence is sorted in

non-decreasing order.

Is the algorithm unambiguous? No, because step 3 does not specify how the pair of indices (i, j) is to be found.

That is a sub-problem that also has to be fully specified. However, no matter how this is done, the algorithm is

correct.

Is the algorithm finite? Yes. Since the maximum possible number of exchanges is n(n−1)/2 — that is the number

of different pairs (i, j) with i < j — sooner or latter the search in step 3 to find an acceptable pair (i, j) will fail.

Is the algorithm efficient? That depends on how the pair of indices is found in step 3. (If that is done from scratch

every time, it will be inefficient.)

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 3 (102)

Abstract data types

Most algorithms need to organize the data they work with in certain ways. So, all modern programming languages

allow the programmer to define new data types that are not predefined in the language. More often than not each

particular kind of data used by an algorithm can be stored in more than one way but is used in essentially the same

way. In those cases the programmer should choose the more efficient storage organization for each kind of data.

What constitutes the best storage organization can change during the development of the program. For example, at

first it might be thought that the space required to store the data is more important that the time it takes to query

or modify it. Later on it may turn out that it is the other way around. So, a good programmer will pay considerable

attention to the operations (transformations, queries) that the algorithm needs to perform on its data, and will define

data types not by the specific way they store their information but by what operations are allowed to be performed

on the information that is supposed to be stored in each one of them. He/she will design abstract data types.

An abstract data type is a data type that exposes to the rest of the program the ways the data it stores can be queried

or modified (the interface), without exposing to the rest of the program its internal workings (the implementation),

be it how the data is actually stored or how the queries/modifications are actually performed. This will make the

program more modular, because as long as the interface of an abstract data type is not changed, changes in its

implementation will not affect how the rest of the program is coded.

A proper specification of the interface defines not only the names and arguments of the operations that can be

performed on instances of the data type (that has to be placed in the source code) but also what their side effects are

(that should be placed in the source code in the form of comments). Some programming languages provide facilities

(assertions, and pre- and post-conditions) that help ensure that the interface of a data type is used correctly.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 4 (103)

Computational complexity (part 1, the RAM model of computation)

To be able to compare the efficiency of different algorithms one needs a model of computation. A model of computation

quantifies how much work is needed to perform an elementary task, such as performing an arithmetic operation or a

memory access.

The RAM model of computation is one of the simplest we can use. It is based on the notion of a Random Access

Machine, abbreviated as RAM. Under this model of computation

• an elementary arithmetic operation, such as +, - and the like, a comparison, and an assignment, of numbers with

a given fixed number of bits, uses one time step,

• the operation of calling a subroutine (just the call, not the actual work done by the subroutine), of evaluating

a numerical transcendental function such as sin(x), and of following a conditional branch, also uses one time

step,

• loops, and subroutines, have to be broken down into their individual constituents,

• a memory access, be it a read or a write access, also uses one time step, and

• the memory space used to store a number with a given fixed number of bits uses one unit of space.

This is, of course, a very simplistic model of what happens on a true processor. For example, on a modern processor

a division takes much more time than an addition. It is nonetheless a useful model, because in the worst case it

deviates (above and below) from what happens on a modern processor by a constant factor.

The computational complexity of an algorithm gives the number of time steps, and the number of units of space,

required by the algorithm to solve a given problem. It is a function of the size of the algorithm’s input. The size of

the input is usually either the number of its data items (say, the number of elements of an array), or one of the inputs

itself (say, the exponent in an exponentiation algorithm).

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 5 (104)

Computational complexity (part 2, a simple example)

Consider the following very simple algorithm:

Algorithm: Mean.

Input: a sequence of n numbers a1, a2, . . . , an, with n > 0.

Output: the arithmetic mean µ = 1
n

∑n
i=1 ai

Steps:

1. [Initialization.] Set s to a1.

2. [Sum.] For i = 2, 3, . . . , n, add ai to s.

3. [Return.] Terminate the algorithm, outputting s/n as the value of µ.

To determine the computational complexity of this algorithm we need to count the number of elementary operations

it performs. Step 1 requires one time step to read a1 (it is read directly into s, so no assignment is needed). For

each value of i, step 2 requires five time steps: one to read ai, another one to add it to s, and another three to

increment i, to compare it with n, and to perform a conditional jump according to the result of the comparison.

Step 3 requires two time steps, one to perform the division and another to terminate the algorithm (we consider it to

be a subroutine return, so we also count it). Since there are n− 1 values in step 2, the total number of time steps

used by the algorithm is T (n) = 1 + 5(n− 1) + 2 = 5n− 2.

Doing such a detailed analysis is usually not necessary. All that one is usually interested in is knowing how fast T (n)

grows when n grows. For large n, in this case T (n)/n is almost constant (linear complexity). Knowing that is

usually much more important than knowing that T (n) ≈ 5n; knowledge of the growth constant, 5 in this case,

although useful, is in most cases an overkill. (After all, the true constant will depend on the processor where the

algorithm will be run and on the optimizations of the code made by the compiler.)

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 6 (105)

Algorithm analysis (part 1, formal and empirical analysis)

In the last slide we did a formal complexity analysis of a simple algorithm. We have taken the trouble to account for

every elementary operation performed by the algorithm. That was easy to do because the algorithm was very easy.

For more complex algorithms, specially for those with a flow of execution that depends on the input, that is hard to

do, even if one takes a probabilistic approach to the problem. (In a probabilistic approach every conditional branch

that depends on the input data has a specific probability of being taken. Assigning these probabilities usually requires

a great deal of mathematical sophistication on the part of the person doing the formal complexity analysis.)

When a formal complexity analysis it too difficult to perform, or when we are just too lazy to do it (or when we do not

know enough to do it), one can do an empirical complexity analysis. An empirical analysis is based on experimentation.

One implements the algorithm using a suitable programming language, and one either adds code to count the number

of operations done by the program (this is called instrumenting the program), or one just measures its execution

time. In both cases, one has to select a good set of typical inputs of various sizes. The experimental values of T (n)

measured in this way can then be plotted as a function of n to see how they grow. With luck (or knowledge), it will

be possible to find out a mathematical formula that fits the experimental observations reasonably well.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 7 (106)

Algorithm analysis (part 2, worst, best, and average cases)

The worst case time of an algorithm is the function defined by the maximum number of time steps used by the

algorithm to deal with any valid input of size n. The best case and average case times are defined in the same way.

(Best, worst, and average spaces can also be defined.) As shown in the following figure, these functions may on

occasion decrease when the problem size increases.

problem size n

T (n)

number
of

steps

•
•
•

•
•

•
•

•
•
•
•

•

•
•

•
•
•
•

•
•
•
•

•
•
•
•
•

best case

average case

worst case

lower bound

upper bound

Best and worst case times are usually easier to determine than the average case time. Furthermore, exact best and

worst times are usually more difficult to determine, and to use, than smooth bounds of these functions (in blue in the

figure). Obviously, we need a lower bound for the best case and an upper bound for the worst case.

We are usually interested in knowing how fast the lower and upper bounds grow when the size of the problem increases.

For example, T1(n) = 3n2 and T2(n) = 10n logn grow at clearly distinct rates, while T3(n) = 4n2 and

T4(n) = 3n2 + 10n do not. Mathematicians have a way to express succinctly these differences: asymptotic

notation. Using asymptotic notation we talk about the best, average, and worst time complexity of an algorithm.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 8 (107)

Asymptotic notation (part 1, definitions)

Asymptotic notation allows us to hide irrelevant details about how fast a function grows. For example, when n is a

huge number it is overkill to know exactly that T1(n) = 2n2+3000n+5 and that T2(n) = 10n2+100n−23.

For huge numbers all that matters is that T1(n) is approximately 2n2 and that T2(N) is approximately 10n2, so

that T2(n) will be about 5 times larger than T1(n). In asymptotic notation the only detail that is kept about T1(n)

and T2(n) is that they grow like a square function; even the constant factor that multiplies n2 is hidden behind the

mathematical notation.

Asymptotic notation comes in one of several forms (all functions and constants are assumed here to be positive):

• [Big Oh notation] The Big Oh notation is useful

to deal with upper bounds. The notation

f(n) = O
(
g(n)

)
means that there exists an n0 and a constant C

such that, for all n > n0, f(n) 6 Cg(n).

• [Big Omega notation] The Big Omega notation

is useful to deal with lower bounds. The notation

f(n) = Ω
(
g(n)

)
means that there exists an n0 and a constant C

such that, for all n > n0, f(n) > Cg(n).

• [Big Theta notation] The Big Theta notation is

useful to deal with upper and lower bounds that

have the same form. The notation

f(n) = Θ
(
g(n)

)
means that there exists an n0 and two constants

C1 and C2 such that for all n > n0 one has

C1g(n) 6 f(n) 6 C2g(n).

• [small oh notation] The notation

f(n) = o
(
g(n)

)
means that f(n) grows slower than g(n), i.e., that

lim
n→∞

f(n)
g(n)

= 0.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 9 (108)

https://en.wikipedia.org/wiki/Big_O_notation

Asymptotic notation (part 2, properties)

The notation introduced in the previous slide can be used in an expression. For example, f(n) = n2 +O(n) means

that f(n) deviates from n2 by a quantity that is O(n), that is, whose absolute value is bounded by a multiple

of n. (The definitions introduced before can be extended to general functions by using absolute values.) We may,

for example, say that O(2n2 − logn) = O(3n2 + 100n − 23), because the absolute value of both functions

can be bounded by a quadratic, i.e., both are O(n2).

What can we say about O
(
f(n) + g(n)

)
? There are three cases to consider:

• f(n) = Θ
(
g(n)

)
, which implies that g(n) = Θ

(
f(n)

)
. In this case O

(
f(n) + g(n)

)
= O

(
f(n)

)
.

• f(n) = o
(
g(n)

)
. In this case O

(
f(n) + g(n)

)
= O

(
g(n)

)
.

• g(n) = o
(
f(n)

)
. In this case O

(
f(n) + g(n)

)
= O

(
f(n)

)
.

In all cases the function that grows faster “wins” (remember, upper bounds).

How about Ω
(
f(n) + g(n)

)
? Here the function that grows slower “wins” (remember, lower bounds).

How about Θ
(
f(n) + g(n)

)
? If f(n) = Θ

(
g(n)

)
then Θ

(
f(n) + g(n)

)
= Θ

(
f(n)

)
. Otherwise, the lower

and upper bounds of f(n) + g(n) do not grow in the same way, and so the Big Theta notation cannot be used.

How about a multiplication by a (positive) constant c? Easy. The constant is discarded, as it is implicit in the

notation: O
(
cf(n)

)
= O

(
f(n)

)
, Ω
(
cf(n)

)
= Ω

(
f(n)

)
, and Θ

(
cf(n)

)
= Θ

(
f(n)

)
.

How about the product of two functions? Easy. Products are retained: O
(
f(n)g(n)

)
= O

(
f(n)

)
O
(
g(n)

)
,

Ω
(
f(n)g(n)

)
= Ω

(
f(n)

)
Ω
(
g(n)

)
, and Θ

(
f(n)g(n)

)
= Θ

(
f(n)

)
Θ
(
g(n)

)
.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 10 (109)

Asymptotic notation (part 3, useful information)

To determine the truth or falsewood of each of the statements f(n) = O
(
g(n)

)
, f(n) = Ω

(
g(n)

)
, f(n) =

Θ
(
g(n)

)
, f(n) = o

(
g(n)

)
, one usually only needs to find out how f(n)

g(n)
behaves when n grows to infin-

ity. In pathological cases where limn→∞
f(n)
g(n)

does not exist, one will need to compute lim infn→∞
f(n)
g(n)

and

lim supn→∞
f(n)
g(n)

. We will not encounter these cases in this course. We have:

lim
n→∞

∣∣∣∣∣f(n)

g(n)

∣∣∣∣∣ =

0, ⇒ f(n) = o

(
g(n)

)
f(n) = O

(
g(n)

)
> 0, ⇒ f(n) = O

(
g(n)

)
f(n) = Θ

(
g(n)

)
f(n) = Ω

(
g(n)

)
∞, ⇒ f(n) = Ω

(
g(n)

)
Informally, f(n) = O(g(n)) when f(n) does not grow faster than g(n).

While mentally comparing two functions, one can discard all constants and all lower order terms. Note that na grows

faster than logn for any a > 0, that na grows faster that nb when a > b > 0, that an grows faster that bn

when a > b > 1, that an grows faster that nb for any a > 1, and that n! ≈
(
n
e

)n√
2πn

(
1 + 1

12n

)
(this is

part of Stirling’s asymptotic formula for n!) grows faster than any na or an. Note, however, that n! grows slower

than nn. For example, in the comparison of

f(n) = 100n3 + 101000n14/5 with g(n) = 10−1000n! + 2n

it is enough to compare

n3 with n!

This is so because n3 grows faster that n14/5 = n2.8, and because n! grows faster than any power. In this case

n! wins by a huge margin, and so f(n) = o
(
g(n)

)
. Of course, this also means that f(n) = O

(
g(n)

)
. In this

particular case, when n 6 810, f(n) is actually larger than g(n).

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 11 (110)

Asymptotic notation (part 4, extra notation)

In the previous slide it is stated that logn grows slower than any power of n. Mathematically, we say that logn =

o(nε) for any ε > 0, or that logn = no(1). Sometimes, logarithmic factors are a nuisance, as they are minor

details in a computational complexity expression. For example, the difference between O(n6) and O(n6 logn) is

just the relatively small logn. In those cases it is possible to also hide the logarithmic factors behind the asymptotic

notation. The Õ notation was created for that purpose.

• [Big Soft Oh notation]

f(n) = Õ
(
g(n)

)
means that

f(n) = O
(
g(n) logk g(n)

)
for some k > 0.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 12 (111)

Asymptotic notation (part 5, examples)

The following examples may help understand better the properties of the Big Oh notation:

• 10n2 + 30n + 13 = O(n2), because for n > 31 we have 10n2 + 30n + 13 6 11n2. We have chosen

C = 11, thus forcing n0 to be at least 31. Any value of C larger than 10 would also work, but the closer it

gets to 10 the larger n0 has to be.

• 10n2 + 30n + 13 = O(n3), because for n > 13 we have 10n2 + 30n + 13 6 n3. We have chosen

C = 1. In this case any positive value of C would also work.

• 10n2+30n+13 6= O(n), because no matter howC is chosen there exists an n for which 10n2+30n+13 >

Cn.

We also have [Homework: explain why]:

• 10n2 + 30n+ 13 = Ω(n2).

• 10n2 + 30n+ 13 6= Ω(n3).

• 10n2 + 30n+ 13 = Ω(n).

and

• 10n2 + 30n+ 13 = Θ(n2).

• 10n2 + 30n+ 13 6= Θ(n3).

• 10n2 + 30n+ 13 6= Θ(n).

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 13 (112)

Asymptotic notation (part 6, dominance relations)

The following functions are ordered according to their growth rate: 1, logn,
√
n, n, n logn, n2, n3, 2n, n!.

Consider a processor that can do 1010 arithmetic operations per second. (That lies within the capabilities of top end

contemporary processors.) The following table presents the time it takes that processor to solve a problem requiring

logn, n, n logn, n2, n3, 2n, n!, and nn arithmetic operations (s means seconds, h means hours, d means days,

and y means years):

n logn
√
n n n logn n2 n3 2n n! nn

10 0.2ns 0.3ns 1.0ns 2.3ns 10ns 100ns 102ns 363µs 1s

20 0.3ns 0.4ns 2.0ns 6.0ns 40ns 800ns 105µs 7.7y 3.3× 108y

30 0.3ns 0.5ns 3.0ns 10ns 90ns 2.7µs 107ms 8.4× 1014y

40 0.4ns 0.6ns 4.0ns 15ns 160ns 6.4µs 110s

50 0.4ns 0.7ns 5.0ns 20ns 250ns 12µs 1.3d

60 0.4ns 0.8ns 6.0ns 25ns 360ns 22µs 3.7y

102 0.5ns 1ns 10ns 46ns 1.0µs 100µs 4.0× 1012y

103 0.7ns 3.2ns 100ns 691ns 100µs 100ms

104 0.9ns 10ns 1.0µs 9.2µs 10ms 100s

105 1.2ns 32ns 10µs 115µs 1.0s 1.2d

106 1.4ns 100ns 100µs 1.4ms 100s 3.2y

107 1.6ns 316ns 1.0ms 16ms 2.8h 3.2× 103y

108 1.8ns 1µs 10ms 184ms 11.6d

109 2.1ns 3.2µs 100ms 2.1s 3.2y

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 14 (113)

Asymptotic notation (part 7, wisdom of a master)

I also must confess a bit of bias against algorithms that are efficient only in an

asymptotic sense, algorithms whose superior performance doesn’t begin to “kick in”

until the size of the problem exceeds the size of the universe. . . . I can understand

why the contemplation of ultimate limits has intellectual appeal and carries an

academic cachet; but in The Art of Computer Programming I tend to give short shrift

to any methods that I would never consider using myself in an actual program.

— Donald E. Knuth, The Art of Computer Programming, preface of volume 4A (2011)

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 15 (114)

Classes of problems

In computer science problems are subdivided into classes:

• Problems that can be solved in polynomial time, i.e., for which there exits an O(nk) algorithm, are considered

the tractable problems. They are said to belong to the class P (the P stands for polynomial-time).

• There exist also some problems whose solution can be verified in polynomial time. Consider for example the prob-

lem of factoring an integer: finding its factors is believed to be a difficult problem, but verifying the factorization

can be done using multiplications and primality tests, operations that are known to be in P. (Primality testing

was only proved to be in P in 2002!) Problems of this type are said to belong to the class NP (NP stands for

Nondeterministic Polynomial-time). It is not known if P=NP.

• There exists an important subset of NP problems that are equivalent to a certain “prototype” problem (the

so-called boolean satisfiability problem, usually abbreviated as the SAT problem). Finding an efficient solution to

one such problem automatically provides an efficient solution to the rest of them. These are said to belong to

the class NP-complete. Many meaningful problems are known to belong to this class.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 16 (115)

Useful formulas

The following formulas are useful to analyze algorithms:

•
n∑
k=1

1 = n

•
n∑
k=1

k =
n(n+ 1)

2

•
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

•
n∑
k=1

k3 =

(
n(n+ 1)

2

)2

•
n∑
k=1

1

k
= logn+ γ︸ ︷︷ ︸

Euler’s constant
≈0.577216

+
1

2n
+ O(n−2)

•
m∑
k=n

f(k) =
m∑
k=1

f(k)−
n−1∑
k=1

f(k)

A summation of the form
∑b−1

k=a f(k), with a and b integers, can be approximated by an integral of the form∫ b
a f(x) dx. More precisely, we have (Euler-Maclaurin summation formula):

b−1∑
k=a

f(k) =

∫ b

a

f(x) dx+
m∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣∣
b

a

+Rm,

where Bk are the Bernoulli numbers (B0 = 1, B1 = −1
2

, B2 = 1
6

, B3 = 0, B4 = − 1
30

, . . .), are where

Rm = (−1)m+1

∫ b

a

Bm(x− bxc)
m!

f (m)(x) dx

(here bxc is the greatest integer less than or equal to x, so that x− bxc is the fractional part of x, and Bm(x)

is the m-th order Bernoulli polynomial. [Exercise: confirm the first four formulas given above.]

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 17 (116)

Least squares fit (part 1, theory)

Suppose you have experimental data about the execution time of a program, in the form of
(
x, y(x)

)
pairs, where

x is the problem size and y(x) is the corresponding execution time. Suppose further that the theory tells you that

the execution time should be of the form Ax2 +Bx+ C. How can you estimate A, B, and C?

To be more precise, suppose you have n data pairs (xi, yi), for 1 6 i 6 n. Suppose further that you know that

you should have y(x) = Ax2 +Bx+C, and that your data may have (hopefully small) errors ei in the yi values,

so that yi = y(xi) + ei. We may then write the system of equations
x2

1 x1 1

x2
2 x2 1

x2
3 x3 1

...

x2
n xn 1

︸ ︷︷ ︸

X

 AB
C

︸ ︷︷ ︸

w

=

y1

y2

y3
...

yn

︸ ︷︷ ︸

y

−

e1

e2

e3
...

en

︸ ︷︷ ︸

e

,

which, using matrices and vectors, can be written in the compact form Xw = y − e. One common technique

to solve problems of this kind consists of minimizing the sum of the squares of the ei errors. This is the essence

of the so-called least squares method. The most robust way to solve problems of this type uses the singular value

decomposition1 of the X matrix, or, more precisely, the pseudo-inverse X+ of the X matrix2. The vector wopt that

minimizes the sum of the squares of the errors, and that has the smallest length (if by chance there exist more that

one solution) is given by

wopt = X+y.

1The singular value decomposition (SVD) is a generalization to rectangular matrices of the eigenvalue decomposition (that can only be used for square matrices).
2Like the SVD, the pseudo-inverse extends the concept of the inverse of a matrix to rectangular matrices; it is denoted by a superscript of +.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 18 (117)

Least squares fit (part 1, practice)

The best least squares solution can be found, using the matlab program, or its clone octave, in the following way:

• First, prepare a text file with your data. Put the xi in the first column and the yi in the second column. In the

example below, we will use a file named data.txt with the contents
1 4

2 9

3 18

4 31

• Finally, we enter the following commands in matlab (assuming that y(x) = Ax2 +Bx+ C):
load data.txt

x = data(:,1); % extract the first column

y = data(:,2); % extract the second column

X = [x.^2, x, 0*x+1]; % build the X matrix

w = pinv(X)*y; % optimal solution (could also be written as w = X \ y;)

e = y-X*w; % optional: compute the errors vector

format long

w % print w --- A = w(1), B = w(2), and C = w(3)

norm(e) % optional: print the norm of the error vector (square root of the sum of squares)

plot(x,y,'.r',x,X*w,'og'); % plot the original data and its best least squares approximation

• For the data file given above you should get w = [2,-1,3] and a norm of the error vector very close to zero.

(Because in this case y(x) = 2x2 − x+ 3.)

Of course, you should adapt the code given above to fit your y(x) function. For example, if y(x) = Ax2 +

Bx log(x) + Cx+D, then you should use
X = [x.^2, x.*log(x), x, 0*x+1];

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 19 (118)

A first example

We will now determine the computational complexity of the following simple algorithm:

Algorithm: Linear search of unordered data.

Input: a sequence of n distinct numbers a1, a2, . . . , an, with n > 0, and a number b.

Output: the smallest index i such that ai = b, or 0 if no such index can be found.

Steps:

1. [Initialize index.] Set k to 1.

2. [Test.] If ak = b terminate the algorithm, with k as the output.

3. [Advance.] If k < n then increase k and return to step 2. Otherwise terminate the algorithm with 0 as the

output.

Let f(n) denote the number of steps taken by the algorithm, and let g(n) denote the number of average steps.

The best case occurs when b = a1. So, f(n) = Ω(1). The worst case occurs when b is different for all the ai.

In that case steps 2 and 3 will be done n times. Hence, f(n) = O(n).

The average case depends on the probabilities pi of the events b = ai. Let p0 = 1−
∑n

i=1 pi be the probability

of the remaining event, that b is different for all the ai. When the algorithm terminates in step 2 for a certain value

of i the total number of steps it performs is 1 + 2i+ 3(i− 1). That event has probability pi. When the algorithm

terminates in step 3, with probability p0, the total number of steps it performs is 1 + 2n + 3(n − 1) + 2. We

then have g(n) = (5n)p0 +
∑n

i=1(5i− 2)pi. When pi = 1
n

we have p0 = 0 and g(n) = 1
n

∑n
i=1(5i− 2).

This can be simplified (see next slide) to g(n) = 5n+1
2

, and so in this case g(n) = O(n). In the general case

g(n) is as small as possible when p1 > p2 > · · · > pn.

We could have counted only the number of times the body of the loop (steps 2 and 3) is performed. The result,

np0 +
∑n

i=1 ipi, is similar to what we get from the more detailed analysis (but without the factor of 5).

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 20 (119)

More examples (part 1, O(n) algorithms)

Examples of O(n) algorithms:

• sum of the elements of a vector
double vector_sum(unsigned int n,

double a[n])

{

double r = a[0];

for(unsigned int i = 1u;i < n;i++)

r += a[i];

return r;

}

• inner product of two vectors
double vector_inner_product(unsigned int n,

double a[n],

double b[n])

{

double r = a[0] * b[0];

for(unsigned int i = 1u;i < n;i++)

r += a[i] * b[i];

return r;

}

• sum of two vectors:
void vector_addition(unsigned int n,

double a[n],

double b[n],

double r[n])

{ // r = a + b

for(unsigned int i = 0u;i < n;i++)

r[i] = a[i] + b[i];

}

• find the first index i for which a[i] is equal to x
unsigned int find_index(unsigned int n,

unsigned int a[n],

unsigned int x)

{ // returns n when x is not found

unsigned int i;

for(i = 0u;i < n && a[i] != x;i++)

;

return i;

}

• count out many times a[i] is equal to x
unsigned int count_indices(unsigned int n,

unsigned int a[n],

unsigned int x)

{

unsigned int c = 0u;

for(unsigned int i = 0u;i < n;i++)

if(a[i] == x)

c++;

return c;

}

• recursive computation of n!
double factorial(unsigned int n)

{

return (n < 2u) ? 1.0 : (double)n * factorial(n - 1u);

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 21 (120)

More examples (part 2, O(n2) algorithms)

Examples of O(n2) algorithms:

• multiplication of multi-precision integers (one base-

10 digit per array entry)
void carry_propagation(unsigned int n,

unsigned int a[n])

{

unsigned int carry = 0u;

for(unsigned int i = 0u;i < n;i++)

{

carry += a[i];

a[i] = carry % 10u;

carry /= 10u;

}

assert(carry == 0u);

}

void multiplication(unsigned int n,

unsigned int a[n],

unsigned int b[n],

unsigned int r[2u * n])

{ // r = a * b

assert(sizeof(n) >= (size_t)4 && n <= 47721858u);

for(unsigned int i = 0u;i < 2u * n;i++)

r[i] = 0u;

for(unsigned int i = 0u;i < n;i++)

if(a[i] != 0u)

for(unsigned int j = 0u;j < n;j++)

r[i + j] += a[i] * b[j];

carry_propagation(2u * n,&r[0]);

}

[Homework: Why 47721858?]

• sum of two matrices
void matrix_addition(unsigned int n,

double A[n][n],

double B[n][n],

double R[n][n])

{ // R = A + B

unsigned int i,j;

for(i = 0u;i < n;i++)

for(j = 0u;j < n;j++)

R[i][j] = A[i][j] + B[i][j];

}

• insertion sort
void insertion_sort(unsigned int n,

double a[n])

{

unsigned int i,j;

double v;

for(i = 1u;i < n;i++)

{

v = a[i];

for(j = i;j > 0u && v < a[j - 1u];j--)

a[j] = a[j - 1u];

a[j] = v;

}

}

[Homework: What are the best and worst cases?]

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 22 (121)

More examples (part 3, improved multiplication)

The multiplication of two integers, A and B, each with with 2n bits, can be done as follows.

• Split A into two halves, A1 and A0, each with n bits, so that A = A12
n +A0.

• Likewise, split B into two halves, B1 and B0, again each with n bits, so that B = B12
n +B0.

• In the standard multiplication method the product of A and B is computed with the formula (A1B1)2
2n +

(A1B0 + A0B1)2
n + (A0B0). This requires 4 multiplications of numbers with half the number of bits, so,

according to the master theorem, presented later in this course, using this formula recursively gives rise to an

O(n2) algorithm to compute the product.

• Doing more additions and subtractions, which are O(n) operations, it is possible to eliminate one multiplication

by taking advantage of the identity A1B0 + A0B1 = (A1 + A0)(B1 + B0) − A1B1 − A0B0. Its right

hand side can be computed using only one extra multiplication (the products A1B1 and A0B0 can be reused).

• Thus, if T (n) is the time required to multiply two n-bits integers, we have T (2n) 6 3T (n) + αn, where

the αn term captures the time required to do additions, subtractions, and house-keeping tasks. It follows from

the master theorem that T (n) = O(nlog2 3). Note that log2 3 ≈ 1.58496 is considerably smaller than 2,

so this simple method is a substantial improvement over the original method. [Homework: Compare n2 with

nlog2 3 for n = 10k, k = 1, 2, 3, 4, 5, 6.]

• Using more advanced methods it is possible to multiply two integers much faster than this. The best known

method does the job in O(n logn) steps and uses FFTs (Fast Fourier Transforms).

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 23 (122)

https://cacm.acm.org/magazines/2020/1/241707-multiplication-hits-the-speed-limit/fulltext
https://cacm.acm.org/magazines/2020/1/241707-multiplication-hits-the-speed-limit/fulltext

More examples (part 4, O(n3) algorithms)

Examples of O(n3) algorithms:

• multiplication of two matrices
void matrix_matrix_product(unsigned int n,

double A[n][n],

double B[n][n],

double R[n][n])

{ // R = A * B

for(unsigned int i = 0u;i < n;i++)

for(unsigned int j = 0u;j < n;j++)

R[i][j] = 0.0;

for(unsigned int i = 0u;i < n;i++)

for(unsigned int j = 0u;j < n;j++)

for(unsigned int k = 0u;k < n;k++)

R[i][j] += A[i][k] * B[k][j];

}

[Homework: The three nested for loops can be

done in any order. Measure the execution times, for

n = 511, n = 512, and n = 513, for the 6

possible orders of the loops (ijk, ikj, jik, jki, kij, and

kji.]

• matrix inversion (not much different from the next

algorithm).

• determinant of a matrix
double matrix_determinant(unsigned int n,

double A[n][n])

{ // warning: A is modified

unsigned int i,j,k;

double r,t;

r = 1.0;

for(i = 0u;i < n;i++)

{

// find the biggest element (the pivot)

j = i;

for(k = i + 1u;k < n;k++)

if(fabs(A[k][i]) > fabs(A[j][i]))

j = k;

// exchange lines (if necessary)

if(j != i)

for(r = -r,k = i;k < n;k++)

{

t = A[i][k];

A[i][k] = A[j][k];

A[j][k] = t;

}

// Gauss-Jordan elimination

for(r *= A[i][i],j = i + 1u;j < n;j++)

for(k = i + 1u;k < n;k++)

A[j][k] -= (A[j][i] / A[i][i]) * A[i][k];

}

return r;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 24 (123)

More examples (part 5, improved matrix multiplication)

The matrix multiplication of a (2n)× (2n) matrix can be split as follows:[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
This yields 8 multiplications and 4 additions of n×n matrices. Doing this recursively gives rise to aO(n3) algorithm.

Since the computational complexity of a matrix addition is way smaller than that of a matrix multiplication, the number

of additions is irrelevant in theory (but not in practice).

Strassen found a way to compute[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
that only requires 7 multiplications (and 18 additions). Winograd later reduced the number of additions to 15. The

product is given by[
A11B11 +A12B21 W + V + (A11 +A12 −A21 −A22)B22

W + U +A22(B21 +B12 −B11 −B22) W + U + V

]
where U = (A21−A11)(B12−B22), V = (A21 +A22)(B12−B11), and W = A11B11 + (A21 +A22−
A11)(B11 + B22 − B12). This gives rise to a O(nlog2 7) ≈ O(n2.807) algorithm to multiply matrices. With

considerable effort, it is possible to reduce the exponent to a number closer to 2. The current record is an exponent

of only 2.37286. Note, however, that all known methods with an exponent smaller that 2.7 are so complex, and

with horrendous proportionality constants, that they are useless in practice (reread the wisdom of a master)!

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 25 (124)

More examples (part 6a, exponential complexity)

The following algorithms have exponential complexity:

• computing Fibonacci numbers (in a dumb way)
double F(unsigned int n)

{

return (n < 2u) ? (double)n : F(n - 1u) + F(n - 2u);

}

Homework: what is the computational complex-

ity of this function? How about the computational

complexity of this “improved” way of computing Fi-

bonacci numbers?
double Fi(unsigned int n)

{

static double Ft[10] =

{

0.0, 1.0, 1.0, 2.0, 3.0, // 0 to 4

5.0, 8.0,13.0,21.0,34.0 // 5 to 9

};

return (n < 10u) ? Ft[n] : Fi(n - 1u) + Fi(n - 2u);

}

• print all possible sums of the elements of an array

(generate all subsets); it is assumed that n > 0 and

that n < 8*sizeof(unsigned long).
void print_all_sums(unsigned int n,double a[n])

{

unsigned long mask;

unsigned int i,j;

double sum;

mask = 0ul; // if the bit number i is set to 0 then

// a[i] will not contribute to the sum

// we begin with the empty set

do

{

// do sum

sum = 0.0;

for(i = j = 0u;i < n;i++)

if(((mask >> i) & 1ul) != 0ul)

{

sum += a[i];

printf("%sa[%u]",(j == 0u) ? "" : "+",i);

j = 1u; // next time print a + sign

}

printf("%s = %.3f\n",(j == 0u) ? "empty" : "",sum);

// next subset (discrete binary counter)

mask++;

}

while(mask < (1ul << n));

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 26 (125)

More examples (part 6b, print all sums done in a recursive way)

The print_all_sums function code of the previous slide uses a well known trick to represent subsets of a set with

a relatively small number of elements. The same function can also be implemented in a recursive way, as illustrated

by the following code.
void print_all_sums_recursive(unsigned int n,unsigned int m,double a[n],double sum,unsigned long mask)

{

if(m == n)

{ // nothing more to do; print sum

unsigned int i,j;

for(i = j = 0u;i < n;i++)

if(((mask >> i) & 1ul) != 0ul)

{

printf("%sa[%u]",(j == 0u) ? "" : "+",i);

j = 1u; // next time print a + sign

}

printf("%s = %.3f\n",(j == 0u) ? "empty" : "",sum);

}

else

{

print_all_sums_recursive(n,m + 1u,&a[0],sum ,mask); // do not use a[m]

print_all_sums_recursive(n,m + 1u,&a[0],sum + a[m],mask | (1ul << m)); // use a[m]

}

}

At the top level, this function should be called with m = 0, sum = 0.0, and mask = 0ul. At each level of the

recursion, the code tries two possibilities: either the sum includes a[m] or it does not. The recursion terminates when

m = n.

If it is not necessary to keep track of the terms that are part of the sum then the mask argument is not needed.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 27 (126)

More examples (part 7a, worst than exponential complexity)

When called with m equal to 0, the following recursive function prints all permutations of the integers a0, a1, . . .,

an−1, assumed to be distinct and to be stored in the array a[]:
void print_all_permutations_recursive(unsigned int n,unsigned int m,int a[n])

{

unsigned int i;

if(m == n - 1u)

{ // nothing more to do, visit permutation

for(i = 0u;i < n;i++)

printf("%s%d",(i == 0u) ? "" : " ",a[i]);

printf("\n");

}

else // not yet at the end, place in a[m] each remaining integer and recurse

for(i = m;i < n;i++)

{

#define swap(i,j) do { int t = a[i]; a[i] = a[j]; a[j] = t; } while(0)

swap(i,m); // swap a[i] with a[m]

print_all_permutations_recursive(n,m + 1u,&a[0]); // recurse

swap(i,m); // undo the swap of a[i] with a[m]

#undef swap

}

}

When called with m larger than 0 this function does not change the values of a[0], a[1], . . . , a[m-1], and places

in a[m] each of the remaining values before calling itself recursively. When m is equal to n-1 there is nothing left to

do so the permutation is visited.

Note that although inside the function the contents of the a[] array are reordered, when it returns they fall back to

their original values. The computational complexity of this function is O(n × n!), because the block that prints

each permutation is visited n! times, and printing the permutation is O(n).

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 28 (127)

More examples (part 7b, print_all_permutations_recursive example)

When called with n=3, m=0, and a[]={0,1,2}, the call tree of the print_all_permutations function is the

following:

n=3
m=2

a[]={0,1,2}

n=3
m=2

a[]={0,2,1}

n=3
m=2

a[]={1,0,2}

n=3
m=2

a[]={1,2,0}

n=3
m=2

a[]={2,1,0}

n=3
m=2

a[]={2,0,1}

n=3
m=1

a[]={0,1,2}

n=3
m=1

a[]={1,0,2}

n=3
m=1

a[]={2,1,0}

n=3
m=0

a[]={0,1,2}

i=0 i=1 i=2

i=1 i=1 i=1i=2 i=2 i=2

As we go deeper in the call tree, the red part of the a[] array does not change. As can be seen in this small example,

the permutations are not generated in lexicographic order.

It is possible to prune parts of this call tree. To discard a sub-tree, just to not call the function recursively at the

appropriate place.

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 29 (128)

More examples (part 8, algorithms with “small” computational complexity)

We conclude this tour of examples with two algorithms that have small computational complexity:

• computation of xy using a mathematical formula (y is a real number)
double power_dd(double x,double y)

{

return exp(y * log(x));

}

This is an O(1) algorithm. It works only when x > 0.

• computation of xn using recursion (n is an integer)
double power_di(double x,int n)

{

if(n < 0) return power_di(1.0 / x,-n);

if(n == 0) return 1.0;

double t = power_di(x * x,n / 2); // the integer division discards a fractional part

return (n % 2 == 0) ? t : x * t; // take care of the discarded fractional part

}

This is an O(logn) algorithm. With the exception of x = 0 and n < 0, it works for any x. (By convention

00 = 1; 0 raised to a negative power is illegal.)

• computation of ab mod c (u32 is unsigned int and u64 is unsigned long long)
u32 power_mod(u32 a,u32 b,u32 c)

{

define mult_mod(x,y,m) (u32)(((u64)(x) * (u64)(y)) % (u64)(m)) // (x*y) mod m

if(b == 0) return 1u;

u32 t = power_mod(mult_mod(a,a,c),b / 2,c);

return (b % 2 == 0) ? t : mult_mod(a,t,c);

undef mult_mod

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 30 (129)

Computational challenge

The fusc function – so named by Edsger W. Dijkstra — is defined in the following way for all non-negative integers:

• for n = 0 or n = 1, fusc(n) = n, and

• for n > 1, fusc(2n) = fusc(n) and fusc(2n+ 1) = fusc(n) + fusc(n+ 1).

This function is related to the so-called Calkin-Wilf tree, which is a clever way of generating all rational numbers. It

is known that fusc(n) = O
(
nlog2((1+

√
5)/2)) ≈ O(n0.69424).

Task 1: write a computer program capable of computing fusc(n) for any 64-bit unsigned integer.

Task 2: how long does it take to compute fusc(750599848416597)?

Task 3: and how long does it take to compute fusc(12297829381041378645)? [Hint: are you a masochist?]

Task 4: for your program, is it true that the time it takes to compute fusc(n) is O
(
fusc(n)

)
?

Task 5: find all record-breaking values of fusc(n) for n 6 109; a record-breaking value of a function f(n) is

a value of f(n) for which f(m) < f(n) for all m < n. Can you find any regularity in the values of n of

the record-breakers? Taking advantage of what you have found, give a high-probability list of all record-breakers for

n < 264. [Hint: this is hard, do task 6 first. If you did not find any regularity, you are done for.]

Task 6: fusc(n) can be computed much more efficiently by writing recursion formulas for the expression

a× fusc(n) + b× fusc(n+ 1).

You need to consider two cases: n even and n odd. Rewrite your computer program to take advantage of these

formulas. What is the computational complexity of the new program? How much time does it take to compute

fusc(12297829381041378645) with the new program?

What is the value of fusc(226854911280625642302767490263275623765)?

AED 2022/2023
Tomás Oliveira e Silva

Home P.04 JT.04I page 31 (130)

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD570.html
https://en.wikipedia.org/wiki/Calkin-Wilf_tree
http://mjcnt.phystech.edu/en/article.php?id=82
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD578.html

Computational complexity (exercises)

— P.04 —

Summary:

• Paper and pencil exercises (with solutions and computer verification)

• Extra problems (without solutions)

• Empirical study of the computational complexity of three algorithms

• Formal and empirical computational complexity of several algorithms

AED 2022/2023
Tomás Oliveira e Silva

Home JT.04I P.04 page 1 (131)

Paper and pencil exercises (part 1a, code)

Give a formula for the value returned by each of the following functions, and give their running time in Big Theta

notation. Write a program to confirm your results (you can find these functions in the file functions.c, stored in

the archive P04.tgz).

• int f1(int n)

{

int i,r = 0;

for(i = 1;i <= n;i++)

r += 1;

return r;

}

• int f2(int n)

{

int i,j,r = 0;

for(i = 1;i <= n;i++)

for(j = 1;j <= i;j++)

r += 1;

return r;

}

• int f3(int n)

{

int i,j,r = 0;

for(i = 1;i <= n;i++)

for(j = 1;j <= n;j++)

r += 1;

return r;

}

• int f4(int n)

{

int i,r = 0;

for(i = 1;i <= n;i++)

r += i;

return r;

}

• int f5(int n)

{

int i,j,r = 0;

for(i = 1;i <= n;i++)

for(j = i;j <= n;j++)

r += 1;

return r;

}

• int f6(int n)

{

int i,j,r = 0;

for(i = 1;i <= n;i++)

for(j = 1;j <= i;j++)

r += j;

return r;

}

AED 2022/2023
Tomás Oliveira e Silva

Home JT.04I P.04 page 2 (132)

Paper and pencil exercises (part 1b, solutions)

Let r(n) be the value returned by the function and let t(n) be the corresponding number of iterations of the body

of the inner loop. Then, for n > 0,

• for the f1 function,

t1(n) = r1(n) =
n∑
i=1

1 = n.

In this case we have t1(n) = Θ(n).

• for the f2 function,

t2(n) = r2(n) =
n∑
i=1

(i∑
j=1

1
)

=
n∑
i=1

i =
n(n+ 1)

2
.

In this case we have t2(n) = Θ(n2).

• for the f3 function,

t3(n) = r3(n) =
n∑
i=1

(n∑
j=1

1
)

=
n∑
i=1

n = n

n∑
i=1

1 = n2.

Since t3(n) = r3(n) we have t3(n) = Θ(n2).

• for the f4 function,

r4(n) =
n∑
i=1

i =
n(n+ 1)

2

and t4(n) = r1(n).

• for the f5 function,

t5(n) = r5(n) =
n∑
i=1

(n∑
j=i

1
)

=
n∑
i=1

(n− i+ 1)

= (n+ 1)
n∑
i=1

1−
n∑
i=1

i =
n(n+ 1)

2
.

In this case we have t5(n) = Θ(n2).

• for the f6 function,

r6(n) =
n∑
i=1

(i∑
j=1

j
)

=
n∑
i=1

i(i+ 1)

2

=
1

2

n(n+ 1)(2n+ 1)

6
+

1

2

n(n+ 1)

2

=
n(n+ 1)

12
(2n+ 1 + 3) =

n(n+ 1)(n+ 2)

6
and t6(n) = r2(n). Note that r6(n) = Θ(n3).

For n 6 0, in all these case we have r(n) = t(n) = 0.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.04I P.04 page 3 (133)

Paper and pencil exercises (part 2a, some problems)

Each one of the statements

• S1: f(n) = O
(
g(n)

)
,

• S2: f(n) = Ω
(
g(n)

)
,

• S3: f(n) = Θ
(
g(n)

)
,

can be either true of false for each of the following pairs of functions. Determine which ones are true and explain

why.
f(n) g(n)

logn2 logn+ 2√
n logn2

n
√
n n2

n logn n

n logn 10n logn+ n

n logn n2 + n logn

List the functions given below from lowest to highest order. Mark the functions with the same order.

20 logn log logn 1.000001n 2n 0.1n logn

n 3n n
logn

n logn+ 100 2n+10 n+ 100
n

n! n+ 109 n2 + n
√
n logn log2 n n2 logn+ 10 log logn

AED 2022/2023
Tomás Oliveira e Silva

Home JT.04I P.04 page 4 (134)

Paper and pencil exercises (part 2b, solutions)

f(n) g(n) comparison to perform true statements

logn2 logn+ 2 logn compared to logn, tie S1, S2, and S3√
n logn2 n1/2 compared to logn, f(n) wins S2

n
√
n n2 n3/2 compared to n2, f(n) loses S1

n logn n n logn compared to n, f(n) wins S2

n logn 10n logn+ n n logn compared to n logn, tie S1, S2, and S3

n logn n2 + n logn n logn compared to n2, f(n) loses S1

rank function(s)

1 20

2 log logn

3 logn, logn+ 10 log logn

4 log2 n (Things in red are not significant)

5 n
logn

6 n, n+ 100
n

, n+ 109 (S1 is like 6)

7 0.1n logn, n logn+ 100 (S2 is like >)

8 n2, n2 + n
√
n logn (S3 is like =)

9 1.000001n

10 2n, 2n+10

11 3n

12 n!

AED 2022/2023
Tomás Oliveira e Silva

Home JT.04I P.04 page 5 (135)

Extra problems

Give a formula for the value returned by each of the following functions (if applicable), and give their running

time in Big Theta notation. Write a program to confirm your results (you can find these functions in the file

functions_extra.c, stored in the archive P04.tgz).

• int g1(int n)

{

int i,j,r = 0;

for(i = 0;i <= n;i++)

for(j = i;j >= 0;j--)

r += i - j;

return r;

}

• int g2(int n)

{

int r = 0;

for(int i = 0;i < 2 * n;i += 2)

for(int j = i;j <= 2 * n;j += 2)

r += j;

return r;

}

• void g3(int n,int *a)

{

for(int i = 1;i <= n;i++)

for(int j = i;j <= n;j += i)

a[j] = i;

}

• int g4(int n)

{

int r = 0;

for(int i = 1;i <= n;i *= 2)

r += i;

return r;

}

AED 2022/2023
Tomás Oliveira e Silva

Home JT.04I P.04 page 6 (136)

Computational complexity of three algorithms

Given a sequence of n distinct integers a1, a2, . . . , an, our task is to determine all pairs (ai, aj) such that ai+aj
is equal to a given v. The program find_pairs.c solves this problem in three different ways.

Study, compile, and run the program. What can we say about the time and space complexities of each of the three

algorithms coded in the program? (In the space complexity do not take into account the space needed to store the

algorithm’s input.) Which of the three algorithms has a better computational complexity? Which one uses less extra

space?

Auxiliary information:

• In the three algorithms (ai, aj) is considered to be the same as (aj, ai), so only one of the two is printed. It

is also assumed that in a pair i 6= j.

• The second algorithm requires non-negative integers.

• The qsort function sorts an array using a user supplied comparison function. [Study how this is done!] It has an

average case complexity of O(n logn) and a worst case complexity of O(n2). It can be replaced by another

sorting routine that has a worst case complexity of O(n logn). So, in this problem assume that sorting can be

done in O(n logn).

• The calloc function allocates a memory region with a size (number of bytes) that is the product of its two

arguments, fills that region with zeros, and returns a pointer to its starting location.

• The malloc function allocates a memory region with a size that is given in its only argument and returns a

pointer to its starting location. The initial contents of the memory are arbitrary.

• The free function frees (deallocates) a memory region previously allocated by either the calloc or malloc

functions.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.04I P.04 page 7 (137)

Computational complexity of three algorithms (solution)

The first algorithm uses two nested for loops to iterate over all pairs of indices of the input array. Is has a time

complexity of O(n2) and a space complexity of O(1). The algorithm can be modified to work with real numbers.

For a sum value of v (an unsigned integer), the second algorithm uses a temporary array with v+1 elements to record

the unsigned integers that appear in the input array. It then computes v-a[i] for all elements of the input array

and checks if the difference is marked or not in the temporary array. It has a time complexity of O(n) and a space

complexity of O(v). The algorithm cannot be modified to work with real numbers.

The third algorithm sorts the input array and then makes a single pass (one index going up and another index going

down) through the array. It has a time complexity of O(n logn), due to the sorting routine, and a space complexity

of O(n), to store the sorted array. The algorithm can be modified to work with real numbers.

problem size
103 104 105 106 107 108

time

10−4

10−3

10−2

10−1

10+0

10+1

10+2

10+3

• first algorithm

◦ second algorithm

� third algorithm

•
◦

�

•◦

�

•
◦

�

•◦

�

•
◦

�

•
◦
�

•
◦
�

•
◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦
�

•

◦�

•

◦�

•

◦�

•

◦�

•

◦�

•

◦�

•

◦� ◦� ◦
� ◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�
◦
�

AED 2022/2023
Tomás Oliveira e Silva

Home JT.04I P.04 page 8 (138)

Formal and empirical computational complexity of several algorithms

Extract the file examples.c from the archive P04.tgz. This file contains the code of all functions described in the

T.04 lecture. Redoing the formal analysis done in the T lecture, determine the computational complexity of each

one of the functions. Confirm your results by adding code to each of the functions to count (and print at the end)

the number of times that the body of the innermost loop is executed.

Note that in C it is possible to write code like this (in C++ that is not possible):
for(n = 1;n <= 10;n++)

{

double A[n][n]; // inside a code block non static arrays do NOT need to have a size defined at compile time!

int i,j;

for(i = 0;i < n;i++)

for(j = 0;j < n;j++)

A[i][j] = (double)rand() / (double)RAND_MAX; // one way to get uniformly distributed pseudo-random numbers

//

// put more stuff here, such as a call to an O(n^2) or an O(n^3) function

//

}

For each interesting case (say, one for each computational complexity), make a log-log graph of the number of times

the inner loop was executed versus the problem size.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.04I P.04 page 9 (139)

Elementary data structures
— T.05 —

Summary:

• Data containers

• Arrays (and circular buffers)

• Linked lists (singly- and doubly-linked)

• Stacks

• Queues

• Deques

• Heaps

• Priority queues

• Binary trees

• Tries

• Hash tables

• Exercises

Recommended bibliography for this lecture:

• Analysis of Algorithms, Jeffrey J. McConnell, second edi-
tion, Jones and Bertlett Publishers, 2008.

• Introduction to Algorithms, Thomas H. Cormen, Charles
E. Leiserson, Ronald L. Rivest, and Clifford Stein, third edi-
tion, The MIT press, 2009.

• Algorithms, Robert Sedgewick and Kevin Wayne, fourth
edition, Addison Wesley, 2011

• Estruturas de Dados e Algoritmos em C, António
Adrego da Rocha, terceira edição, FCA.

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 1 (140)

Data containers

In most programs it is necessary to store and manipulate information. This information may be stored and manipulated

directly by the programmer, or it may be encapsulated in a so-called data container. A data container is a data structure

that specifies how the information is organized and stored, together with a standardized interface to access and modify

the information (thus, a class).

There are many types of data containers, differing on the services they provide and on the computational complexity

of these services (the computational complexity depends on how the information is internally organized in the data

container). The choice of data container should be done according to the answers to the following questions:

• Does the insertion and retrieval of information obey some rules? (Say, do we always remove the newest, oldest,

largest, or smallest item of information?)

• Do we need efficient random access to the information?

• Do we need efficient sequential access to the information?

• Do we need to efficiently insert information in a random location?

• Do we need to efficiently delete information from a random location?

• Do we need to efficiently search for information?

• Is the information single valued, say, an integer, or is it multi-valued, say, a (key,value) pair?

Sometimes we are interested in worst-case costs of an operation. That may be so in an interactive program (such as

a video game), because a long operation may give rise to a noticeable delay.

Sometimes we don’t care about worst case costs, but are interested only in the average case (or amortized case).

That is the case when only the total execution time of a program is important.

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 2 (141)

Arrays (part 1, computational complexity)

An array is one data structure that can be used to implement a data container. Assuming that the items of information

are to be stored consecutively in memory (in array elements) it follows that

• it is necessary to specify the size of the array before it is used; if later on it turns out that that size is too small,

it will be necessary to resize the array (that is an O(n) operation, but, if done rarely, its amortized cost is low)

• given a position (an index) random access to information is fast: O(1)

• sequential access is also fast

• inserting information at one end of the used part of the array (assuming it is not full) is fast: O(1)

• inserting information at an arbitrary location, opening space for it, is slow: O(n)

• replacing information at an arbitrary location is fast: O(1)

• deleting information at one end is fast: O(1)

• deleting information at an arbitrary location, closing the space it would otherwise leave behind, is slow: O(n);

without closing the space, it is fast: O(1)

• if the information is stored in the array in random order, then searching for information is slow: O(n)

• if the information is stored in the array in sorted order, then searching for information is fast: O(logn)

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 3 (142)

Arrays (part 2, implementation of a circular buffer)

A circular buffer is an array in which index arithmetic is done modulo the size of the array (for an array with n

elements, index n is the same as index 0). Besides supporting the usual array operations, by keeping track of the

indices of the first and last data items stored in it, a circular buffer also supports O(1) insertion and deletion of data

at either end. Thus a circular buffer is a very efficient way of implementing a queue and a deque (see next slides).

Circular buffers are usually used in device drivers to implement efficiently a queue with a given maximum size, because

it does not require any dynamic memory operations (allocation and deallocation of memory).

The following C++ code illustrates one possible way to increment and decrement an index in a circular buffer (of

floating point numbers):
class circular_buffer

{

private:

int max_size; // the maximum size of the circular buffer

double *data; // array allocated in the constructor

public:

circular_buffer(int max_size = 100) { this->max_size = max_size; data = new double[max_size]; }

~circular_buffer(void) { delete[] data; }

private:

int increment_index(int i) { return (i + 1 < max_size) ? i + 1 : 0; }

int decrement_index(int i) { return (i - 1 >= 0) ? i - 1 : max_size - 1; }

//

// data[i] accesses the number stored in position i

// data[increment_index(i)], accesses the number stored in the position after position i

// data[decrement_index(i)], accesses the number stored in the position before position i

//

// ... (rest of the code for the circular_buffer class)

//

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 4 (143)

Linked lists (part 1, overview)

A linked list is a dynamic data structure, because it can grow as much as needed. In order to be able to do this, each

node of information contains

• the information itself

• in a singly-linked list, a pointer to the next node of information

• in a doubly-linked list, a pointer to the next node and another to the previous node of information

In a singly linked-list, the nodes of infor-
mation are linked as follows (a small cir-
cle represents a nullptr pointer, and a
* before a field name means that it is a
pointer):

*Head

*Next Data

*Next Data

*Next Data

In a doubly linked-list, the nodes of in-
formation are linked as follows (note that
when inserting or removing information it
may be necessary to deal with nullptr

pointers):

*Head

*Next *Prev Data

*Next *Prev Data

*Next *Prev Data

Using an extra special node to hold the
head, in the Next field, and the tail, in the
Prev field, of a doubly linked-list makes
its implementation far simpler (no NULL

or nullptr pointers):

*Head *Tail special node
no data

*Next *Prev Data

*Next *Prev Data

*Next *Prev Data

(An ∗ denotes a pointer.)

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 5 (144)

Linked lists (part 2, computational complexity)

Because of the way information is organized in a linked list,

• it is necessary to keep track of the first node (the head) of the list

• it is possible to keep track of the last node (the tail) of the list

• given a position (an index), random access to information is slow: O(n)

• forward sequential access (from head to tail) is fast; backward sequential access (from tail to head) is slow for

singly-linked lists and fast for doubly-linked lists if the tail is known

• inserting information at the head of the list is fast: O(1)

• if the tail of the list is known, inserting information at the end is fast: O(1)

• if the tail of the list is not known, inserting information at the end is slow: O(n)

• inserting information after a node is fast: O(1)

• deleting information at the head of the list is fast: O(1)

• on a singly-linked list, deleting a node of information is slow: O(n)

• on a doubly-linked list, deleting a node of information is fast: O(1)

• searching for information is slow, even if the data is stored in sorted order: O(n)

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 6 (145)

Linked lists (part 3, operations)

The following operations are usually supported in a linked list implementation:

• creation of the linked list

• destruction of the linked list

• insertion of a new node of information (before the head of the list, after the tail of the list, or after a given node

of information)

• deletion of a node of information (of the head of the list, of the tail of the list, or of a given node of information)

• given a node of information, determine its next node of information

• given a node of information, determine its previous node of information

Given the class
class list_node

{

private:

list_node *next;

// ... (rest of the code for the list_node class)

}

the following code finds the tail of a singly-linked list:
list_node *tail = head;

if(tail != nullptr)

while(tail->next != nullptr)

tail = tail->next;

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 7 (146)

Stacks

A stack, associated with a usage policy of First In Last Out (FILO), or, what is the same, Last In First Out (LIFO),

is a data container that supports the following operations:

• creation of the stack

• destruction of the stack

• add a new element to the top of the stack, called push

• remove the element at the top of the stack, called pop

• take a look at the top element of the stack, called top

• determine the current size of the stack

It is possible to implement a stack using

• an array (in this case the stack has a maximum size,

specified when the stack is created),

• a linked list (keeping the top of the stack at the head

of the list), or

• a deque (see next slides).

The simplest implementation uses an array and two in-

tegers: max_size, which is the maximum size of the

stack, and cur_size, which is the current size of the

stack. In this case, the index of the top of the stack

is cur_size-1, the stack is empty when cur_size==0

and it is full when cur_size==max_size. The following

figure illustrates how the information is organized when

a stack is implemented using an array.

in use

free

{

[0]

[1]

· · ·
[cur size-1]

· · ·
[max size-1]

top
push

pop

[Homework: implement a stack using a linked list.]

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 8 (147)

Queues

A queue, associated with a usage policy of First In First Out (FIFO), or, what is the same, Last In Last Out (LILO),

is a data container that supports the following operations:

• creation of the queue

• destruction of the queue

• add a new element to the back (tail) of the queue, called enqueue

• remove the element at the front (head) of the queue, called dequeue

• determine the current size of the queue

It is possible to implement a queue using

• a circular buffer (in this case the queue has a maxi-

mum size, specified when the queue is created),

• a linked list (preferably one that keeps track of the

tail, to make the enqueue operation efficient), or

• a deque (see next slides).

The simplest implementation uses a circular buffer and

four integers: max_size, which is the maximum size of

the queue, cur_size, which is the current size of the

queue, head_index, which is the index of the head of

the queue, and tail_index, which is the index of the

tail of the queue.

free

{
in use

free

{

[0]

· · ·
[head index]

· · ·
[tail index]

· · ·
[max size-1]

dequeue

enqueue

In an empty queue cur_size==0 and the tail index has

to be one more than the head index (modulo max_size).

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 9 (148)

Deques

A deque is a double-ended queue. It is similar to a queue, but it is possible to insert and remove elements at both

ends of the queue. It supports the following operations:

• creation of the deque

• destruction of the deque

• insert a new element at the front (head) or at the back (tail) of the deque

• remove the element at the front (head) or at back (tail) the of the deque

• determine the current size of the deque

It can be implemented using either a circular buffer or a doubly-linked list (given that it may be necessary to move in

either direction, using a singly-linked list to implement a deque is inefficient).

free

{
in use

free

{

[0]

· · ·
[head index]

· · ·
[tail index]

· · ·
[max size-1]

remove head

insert at head

remove tail

insert at tail

An insertion at either end forces the size of the deque to increase. That determines the direction of movement of the

head or of the tail index.

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 10 (149)

Heaps (part 1, properties)

A heap is an array with internal structure. The internal structure of the array takes the form of an order relation (the

heap property) that has to be maintained between the data stored in certain index positions. To be more precise,

in a binary max-heap with n data items, stored in indices 1, 2, . . ., n, the information stored in index i, with

2 6 i 6 n, cannot be larger than the information stored in index bi/2c; bxc is the largest integer that is not larger

than x (i.e., the floor function). For example, the data stored in the following array (left hand side) satisfies the

binary max-heap property

index value

0 -
1 8
2 5
3 2
4 4
5 3
6 1

0
not used

1 8 2 5 3 2 4 4 5 3 6 1 7
free

Implicit binary tree organization

1 8

2 5 3 2

4 4 5 3 6 1

because 8 > 5 (index 1 versus index 2), 8 > 2 (index 1 versus index 3), 5 > 4 (index 2 versus index 4), 5 > 3

(index 2 versus index 5), and 2 > 1 (index 3 versus index 6). The max-heap property can be easily checked using,

for example, the following code

for(int i = 2;i <= n;i++)

assert(heap[i / 2] >= heap[i]);

We may also have a binary min-heap, and even multi-way heaps. The starting index is usually either 1 or 0.

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 11 (150)

Heaps (part 2, m-way heaps)

For each index of a heap we define its parent index, and its children indices. In a max-heap the data stored in a given

position cannot be larger that the data stored in the parent position, and it cannot be smaller that the data stored in

each one of its children positions. This implicitly defines a tree organization for the data, as shown on the right hand

side of the example given in the previous slide. The first index of the array used by the heap is the root index, as it

corresponds to the root of the implicit tree.

In am-way heap with a root index of 0, the parent of index i > 0 is
⌊
i−1
m

⌋
and its children aremi+1, . . . ,mi+m.

For m = 3 the array is implicitly subdivided in the following way:

0 1 2 3 4 5 6 7 8 9 10 11 12

In a m-way heap with a root index of 1, the parent of index i > 1 is
⌊
i+m−2
m

⌋
and its children are mi −m +

2, . . . ,mi + 1. Note that for m = 2 the formulas are particularly simple. For m = 3 the array is implicitly

subdivided in the following way:

0
not used

1 2 3 4 5 6 7 8 9 10 11 12 13

The path to the root of a node with index i is the sequence of indices i, parent(i), parent
(
parent(i)

)
, and so

on, that stops at the root index. When m = 2 and the root index is 1, the path to the root of i is i,
⌊
i
2

⌋
,
⌊
i

22

⌋
,⌊

i
23

⌋
, . . .,

⌊
i

2k

⌋
, where k = blog2 ic; log2 x is the base-2 logarithm of x. In particular, for a binary heap of size

n, the longest path to the root has length 1 + blog2 nc, which is O(logn).

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 12 (151)

Heaps (part 3, insertion)

A max-heap supports at least the following operations (a min-heap is similar, with the word “largest” replaced by the

word “smallest”):

• creation and destruction of the heap

• inspection of the largest data item (the root of a max-heap holds the largest data value)

• insertion of a data item

• removal of a data item

To insert a data item v on a heap with size n the first step is to place it at the end of the heap. The heap property

is then enforced on the path to the root of the new node, by exchanging the data of a node with that of its parent

whenever the heap property is not satisfied (there is no need to change data elsewhere). Thus, insertion is an

O(logn) operation. The following example illustrate what happens when 9 is inserted on the heap 8, 5, 2, 4, 3, 1:

0
not used

1 2 5 3 4 4 5 3 6 1 7

0
not used

1 2 5 3 4 4 5 3 6 1 7

0
not used

1 2 5 3 4 4 5 3 6 1 78 2 9 9 is larger that 2 (its parent): exchange

8 9 2 9 is larger that 8 (its parent): exchange

9 8 2 9 is at the root: terminate

In C or C++, all this can be done as follows (m = 2 and the root index is 1):

for(i = ++n;i > 1 && heap[i / 2] < v;i /= 2)

heap[i] = heap[i / 2];

heap[i] = v;

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 13 (152)

Heaps (part 4, removal)

To remove a data item, we replace it by the largest of its children, and then we do the same to fill the empty slot

vacated by each child that was moved towards the root, until that cannot be done any more. This procedure leaves

an empty slot in the heap. If it is not the last slot, we move the last slot to the empty slot and then enforce the

heap property on the path to the root starting at that slot. In the worst case about 2 log2 n operations need to be

done — O(logn) — to remove a data item. The following example illustrates what happens when the root (9) is

removed from the heap 9, 7, 5, 1, 2, 4, 3:

0
not used

1 2 3 5 4 1 5 6 4 7

0
not used

1 2 3 5 4 1 5 6 4 7

0
not used

1 2 3 5 4 1 5 6 4 7

0
not used

1 2 3 5 4 1 5 6 4 7

0
not used

1 2 3 5 4 1 5 6 4 7
empty 7 2 3

7 empty 2 3

7 2 empty 3

7 2 3 free

7 3 2 free

In C or C++, removal of the data at position pos can be done as follows (m = 2 and the root index is 1):

for(i = pos;2 * i <= n;heap[i] = heap[j],i = j)

j = (2 * i + 1 <= n && heap[2 * i + 1] > heap[2 * i]) ? 2 * i + 1 : 2 * i; // select largest child

for(;i > 1 && heap[i / 2] < heap[n];i /= 2)

heap[i] = heap[i / 2];

heap[i] = heap[n--];

[Homework: what happens in the second for loop when i is equal to n?]

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 14 (153)

Priority queues

A priority queue is a data container that supports the following operations:

• creation and destruction of the priority queue

• inspection of the largest data item (peek)

• insertion of a data item (enqueue)

• removal of the largest data item (dequeue)

It can be implemented easily using a max-heap. Conceptually, a priority queue is similar to an ordinary queue, its

only difference being that instead of removing the oldest element it is the largest that gets removed. (In terms of

implementation, a priority queue and an ordinary queue are quite different.)

Instead of inspecting and removing the largest data item, a priority queue can allow the inspection and removal of its

smallest data item. This variant of the priority queue is, obviously, implemented using a min-heap.

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 15 (154)

Binary trees (part 1, overview)

A binary tree is a dynamic data structure composed of nodes. Each node of information contains

• the information itself (the data item)

• a pointer to the node on the “left” side (the left branch); in an ordered binary tree the data items stored on this

side are all of them smaller that the data item stored on the node

• a pointer to the node on the “right” side (the right branch); in an ordered binary tree the data items stored on

this side are all of them larger that the data item stored on the node

• optionally, a pointer to the parent node

A null pointer (NULL in C and nullptr in C++) indicates the nonexistence of a node. The root node is the node

where the tree begins. It is the only node without a parent node. A leaf node is a node whose left and right node

pointers are null.

The height of a tree is the number of levels it has.

Each time a left or a right pointer is followed the level

increases by 1. It is usual to consider that the root is at

level 0. We may also talk about the height of the left or

right branches of a node: that it the height of the tree

that has as root the left or right node of the node. It is

not necessary for a tree to have its leaves all at the same

level (but that is usually desired).

Visually, a tree is usually depicted upside-down, i.e.,

with its root on top:

5

3 6

1 4 8

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 16 (155)

Binary trees (part 2, node contents)

In these slides each node of the ordered binary tree will be implemented (in C) as follows:
typedef struct tree_node

{

struct tree_node *left; // pointer to the left branch (a sub-tree)

struct tree_node *right; // pointer to the right branch (a sub-tree)

struct tree_node *parent; // optional

int data; // the data item (we use an int here, but it can be anything)

}

tree_node;

Each node may also keep information about

• the height of the sub-tree having that node as root,

• the difference of the heights of its left and right branches (the balance)

• the level of the node, or

• other useful information that may be need by a particular program.

In the following slides we present C code snippets of functions that do useful things to a tree. Study them carefully.
Most of them take the form of a recursive function, because trees are recursive structures: the left and right branches

of a node are also trees!

In some of these functions we pass a pointer to the location in memory where the pointer to the root of the tree is

stored (a pointer to a pointer). Things are done in this way because it may be necessary to change the root of the

tree!

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 17 (156)

Binary trees (part 3, insertion)

The following non-recursive function creates a new node and inserts it in the ordered tree at the appropriate location:
tree_node *new_tree_node(int data,tree_node *parent); // sets left and right to NULL

void insert_non_recursive(tree_node **link,int data)

{

tree_node *parent = NULL;

while(*link != NULL)

{

parent = *link;

link = (data <= (*link)->data) ? &((*link)->left) : &((*link)->right); // select branch

}

*link = new_tree_node(data,parent);

}

This can also be done recursively as follows (the pointers make this much more elegant, but also more difficult to

understand):
void insert_recursive(tree_node **link,tree_node *parent,int data)

{

if(*link == NULL)

*link = new_tree_node(data,parent);

else if(data <= (*link)->data)

insert_recursive(&((*link)->left),*link,data);

else

insert_recursive(&((*link)->right),*link,data);

}

These functions are used as follows:
tree_node *root = NULL;

insert_nonrecursive(&root,4);

insert_recursive(&root,NULL,7);

What is the height of an initially empty tree

after insertion of 1, 2, . . . , 31? What about

the heigth of an initially empty tree after in-

sertion of f(1), f(2), . . . , f(31), where the

function f(n) reverses the order of the least

significant 5 bits of its argument?

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 18 (157)

Binary trees (part 4, search in an ordered and in an unordered binary tree)

For an ordered binary tree, the following non-recursive

and recursive functions return one node of the tree for

which its data field is equal to a given value (or NULL if

there is no such node):
tree_node *search_non_recursive(tree_node *link,int data)

{

while(link != NULL && data != link->data)

link = (data < link->data) ? link->left : link->right;

return link;

}

tree_node *search_recursive(tree_node *link,int data)

{

if(link == NULL || link->data == data)

return link;

if(data < link->data)

return search_recursive(link->left,data);

else

return search_recursive(link->right,data);

}

These functions are used as follows:
tree_node *root,*n;

int data;

n = search_non_recursive(root,data);

n = search_recursive(root,data);

For an unordered binary tree, the following recursive

function returns one node of the tree for which its data

field is equal to a given value (or NULL if there is no

such node):
tree_node *search_recursive(tree_node *link,int data)

{

node *n;

if(link == NULL || link->data == data)

return link;

// try the left branch

if((n = search_recursive(link->left,data)) != NULL)

return n;

// not found in the left branch, try the right branch

return search_recursive(link->right,data);

}

This function is used as follows:
tree_node *root,*n;

int data;

n = search_recursive(root,data);

Note that for an unordered binary tree it may be neces-

sary to search the entire tree, which is an order O(n)

operation, while in an ordered binary tree it is necessary

to examine at most h + 1 nodes, where h is the maxi-

mum height of any node of the tree.

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 19 (158)

Binary trees (part 5, traversal)

The following non-recursive and recursive functions traverse the entire tree in different orders:

void visit(tree_node *n)

{

printf("%d\n",n->data);

}

void traverse_breadth_first(tree_node *link)

{

queue *q = new_queue();

enqueue(q,link);

while(is_empty(q) == 0)

{

link = dequeue(q);

if(link != NULL)

{

visit(link);

enqueue(q,link->left);

enqueue(q,link->right);

}

}

free_queue(q);

}

void traverse_depth_first_recursive(tree_node *link)

{

if(link != NULL)

{

visit(link);

traverse_depth_first_recursive(link->left);

traverse_depth_first_recursive(link->right);

}

}

void traverse_in_order_recursive(tree_node *link)

{

if(link != NULL)

{

traverse_in_order_recursive(link->left);

visit(link);

traverse_in_order_recursive(link->right);

}

}

They are used as follows:
tree_node *root;

traverse_breadth_first(root);

traverse_depth_first_recursive(root);

traverse_in_order_recursive(root);

[Homework: do the traverse_depth_first function in a non-recursive way.]

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 20 (159)

Binary trees (part 5, breadth first traversal, using recursion)

Homework: the breadth_first function of this slide can be used to traverse a binary tree in breadth first order.

It uses a recursive function to do the actual traversal. Study how they work.
int recursive_breadth_first(tree_node *link,int desired_depth)

{

if(link == NULL)

return 0; // no node

if(desired_depth == 0)

{

visit(link);

return 1; // found a node at the desired depth

}

return recursive_breadth_first(node->left,desired_depth - 1) | recursive_breadth_first(node->right,desired_depth - 1);

}

void breadth_first(tree_node *root)

{

for(int desired_depth = 0;recursive_breadth_first(root,desired_depth) != 0;desired_depth++)

;

}

In particular:

� What is the purpose of the desired_depth argument of the recursive function?

� What is the purpose of the value returned by the recursive function?

� Are these functions better than the traverse_breadth_first function the previous slide with respect to

i) memory consumption, ii) execution time?

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 21 (160)

Binary trees (part 6a, misc)

Does the purpose of each of the following functions match its name?

// use count_nodes(root) to count the nodes of an entire tree

int count_nodes(tree_node *link)

{

return (link == NULL) ? 0 : count_nodes(link->left) + 1 + count_nodes(link->right);

}

// use count_leaves(root) to count the leaves (terminal nodes) of an entire tree

int count_leaves(tree_node *link)

{

if(link == NULL)

return 0;

if(link->left == NULL && link->right == NULL)

return 1;

return count_leaves(link->left) + count_leaves(link->right);

}

// use check_node(root,NULL,INT_MIN,INT_MAX) to check an entire ordered binary tree

void check_node(tree_node *link,tree_node *parent,int min_bound,int max_bound)

{

if(link != NULL)

{

assert(min_bound <= link->data && link->data <= max_bound && link->parent == parent);

check_node(link->left,link,min_bound,link->data);

check_node(link->right,link,link->data,max_bound);

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 22 (161)

Binary trees (part 6b, misc)

Does the purpose of each of the following functions match its name?

// use set_level_nodes(root,0) to set the level of each node of an entire tree

void set_level(tree_node *link,int level)

{

if(link != NULL)

{

link->level = level;

set_level(link->left,level + 1);

set_level(link->right,level + 1);

}

}

// use set_height(root) to set the height of each node of an entire tree

int set_height(tree_node *link)

{

int left_height,right_height;

if(link == NULL)

return 0;

left_height = set_height(link->left);

right_height = set_height(link->right);

link->height = (left_height >= right_height) ? 1 + left_height : 1 + right_height;

return link->height;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 23 (162)

Binary trees (part 7a, balancing)

A binary tree is said to be perfect if all its leaves are at the same level. A perfect binary tree with height h has

2h − 1 nodes: 2h−1 leaves and 2h−1 − 1 internal nodes. Abusing the concept of perfect binary tree, we will say

that a binary tree is also perfect if some of the leaves at the last level of the tree are missing (but all other levels are

full). Such a tree has a height as small as possible. That is desirable because many operations that modify a binary

tree do a number of elementary operations that is proportional to the height of the tree. A perfect binary tree with

n nodes has a height equal to
⌈
log2(n+ 1)

⌉
, which is O(logn).

A binary tree is said to be balanced if for each of its nodes the height of its left branch does not differ by more than

1 from the height of its right branch. A balanced binary tree of height h has at least Gh nodes, where G0 = 0,

G1 = 1 and, for n > 1, Gn = Gn−1 + 1 + Gn−2, and it has at most 2h − 1 nodes. It can be verified that

Gn = Fn+2 − 1, where Fn is the n-th Fibonacci number. It follows that the height of a balanced binary tree is

Θ(logn). It is possible, using simple O(logn) operations, to keep a binary tree balanced after the insertion or

removal of a node. Searching is also an O(logn) operation in a balanced binary tree.

A self-balancing tree, also known as an AVL tree (so-called to honor its two Russian inventors: Adelson-Velsky and

Landis), remains balanced after insertions and deletions. When a sub-tree becomes unbalanced during an internal

operation, it can be balanced using simple local operations (see next slide).

In a computer program, a red-black tree (not studied in this course) can be an alternative to a self-balancing tree.

Both have search, insertion and removal worst case costs of O(logn).

It the data in inserted in an ordered binary tree in random order, then the final tree will be, with high probability, be

well balanced (meaning that the absolute value of the height difference between the left and right sub-trees of any

node will be small).

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 24 (163)

Binary trees (part 7b, how to keep an ordered binary tree balanced)

After insertion of a new node (in sub-tree γ of the following illustration), a sub-tree of a previously balanced and

ordered binary tree can become unbalanced in essentially the following two ways (there exist also partial or total mirror

images of these two cases, which we do not illustrate here):

Before:

A

Bα

height
h β

height
h

too high

γ

height
h+ 1

After (single rotation):

B

A

α

height
h

β

height
h

γ

height
h+ 1

Before:

A

B

C

α

height
h

β
height
h− 1

too high

γ

height
h

δ

height
h

After (double rotation):

C

A B

α

height
h

β
height
h− 1

γ

height
h

δ

height
h

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 25 (164)

Tries

A trie is a prefix tree. Each node of the tree represents a prefix of the information that is to be stored in the tree.

This means that it must be possible to split that information into one of more symbols. Each level of the tree stores

one more symbol.

When the information to be stored is a concatenation of symbols, each of which can take m different values, a tries

is essentially an m-way search tree (each node of the tree can have at most m children.) An index is somnetimes

used to select the appropriate children. For example, storing and searching for a telephone number can be done very

efficiently using a trie (here m will be 10). The most significant digit of the telephone number selects the child of

the root of the tree that must be followed, the second most significant digit selects the child of that node, and so on.

Only the nodes that are needed are actually allocated.

TO DO: insert a figure here.

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 26 (165)

Hash tables (part 1, overview)

A hash table is a data container that supports (at least) the following operations:

• creation and destruction of the hash table

• insertion of a data item composed of two parts: the key and its corresponding value

• search for a data item with a given key

• removal of a data item given its key

In an array, information is accessed given its index. In a hash table, information is accessed given its key. In a properly

sized hash table, the insertion, removal and search operations have very good expected computational complexity:

O(1). This is better that the computational complexity of the same operations in a balanced binary tree, which is

O(logn), where n is the number of data items stored in the data container.

A hash table is usually the data container used to implement an associative array, a symbol table, or a dictionary.

(Other data containers may also be used for this, but the hash table is usually more efficient.) The key may not be

an integer; it may be, for example, a string.

In the insert operation, if a data item with the same key already exists in the hash table, the insert operation should

either fail or it should replace the corresponding value (and no new data item is created). The programmer has to

decide which is best for a given application.

An hash table is usually implemented using an array. It may be an array of data items (keys and respective values), if

open addressing (explained later) is used, or it may be an array of pointers to the heads of (doubly-)linked lists of

data items, if chaining is used. Instead of a pointer to the head of a linked list, it is also possible to use a pointer

to the root of a binary tree, or even a pointer to another hash table.

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 27 (166)

Hash tables (part 2a, hash functions)

Let s be the size of the array used to implement the hash table. An hash function h maps each possible key k to an

integer i in the range 0, . . . , s− 1. This integer will then be used to access the array. This conversion is necessary

because the key itself may not be an integer, and even if it is an integer, its value may be too small or too large.

If the number of keys, n, is larger than the size of the array, s, then it is inevitable that two (or more) keys map,

via the hash function, to the same index. Even when n is smaller than s, it is possible, if the hash function is

not chosen with extreme care, for these so-called collisions to happen. Indeed, due to the birthday paradox, if

the hash function spreads the indices in an uniform way, then there is at least a 50% chance of a collision when

n > (1 +
√

1 + 8s log 2)/2.

A good hash function should attempt to avoid too many collisions. There are many ways to attempt to do this. One

of them it to treat the key, or rather, its memory representation, as a possibly very large integer, and to choose as

hash function the remainder of the division of this large integer by the array size. When the key is a string this gives

rise to code such as:

unsigned int hash_function(const char *str,unsigned int s)

{ // for 32-bit unsigned integers, s should be smaller that 16777216u

unsigned int h;

for(h = 0u;*str != '\0';str++)

h = (256u * h + (0xFFu & (unsigned int)*str)) % s;

return h;

}

It turns out that hash functions of this form are better (less collisions) when s is a prime number. (Furthermore, the order

of 256 in the multiplicative group of remainders co-prime to s should be large; in particular, s should not be an even number.)

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 28 (167)

Hash tables (part 2b, more hash functions)

The hash function presented in the previous slide is reasonably good but it is slow, because it requires a remainder

operation in each iteration of the for loop, and it works better when s is a prime number. Furthermore, for a 32-bit

unsigned int data type, due to a possible integer overflow, it should not be used when s is larger than or equal to

232−8 = 16777216.

One way to solve these problems is to get rid of all but the last of the remainder operations, as done in the following

variant of the hash function of the previous slide:

unsigned int hash_function(const char *str,unsigned int s)

{

unsigned int h;

for(h = 0u;*str != '\0';str++)

h = 157u * h + (0xFFu & (unsigned int)*str); // arithmetic overflow may occur here (just ignore it!)

return h % s; // due to the unsigned int data type, it is guaranteed that 0 <= h % s < s

}

(The multiplication factor 157 was chosen is an almost arbitrary way.) Note that return values smaller that 232 mod

s (for a 32-bit data type) will be slightly more probable than those larger than or equal to 232 mod s (and, of course,

smaller that s). This defect does not cause any significant problem when s is many times smaller (say, 1000 times

smaller) that the largest possible unsigned integer. Of course, this potential problem can be almost eliminated if

64-bit integers are used (unsigned long long data type).

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 29 (168)

Hash tables (part 2c, even more hash functions)

Other possible hash functions are based on so-called cyclic redundancy checksums (CRC), or on so-called message

digest signatures (such as MD5), or on secure hash algorithms (such as SHA-1). The following hash function is based

on a 32-bit cyclic redundancy checksum.

unsigned int hash_function(const char *str,unsigned int s)

{

static unsigned int table[256];

unsigned int crc,i,j;

if(table[1] == 0u) // do we need to initialize the table[] array?

for(i = 0u;i < 256u;i++)

for(table[i] = i,j = 0u;j < 8u;j++)

if(table[i] & 1u)

table[i] = (table[i] >> 1) ^ 0xAED00022u; // "magic" constant

else

table[i] >>= 1;

crc = 0xAED02020u; // initial value (chosen arbitrarily)

while(*str != '\0')

crc = (crc >> 8) ^ table[crc & 0xFFu] ^ ((unsigned int)*str++ << 24);

return crc % s;

}

For the curious, the “magic” constant encodes the coefficients (bits) of a primitive polynomial in the finite field

GF (232). In this case the polynomial is x32 + x30 + x26 + x11 + x9 + x8 + x6 + x5 + x4 + x2 + 1.

[Homework: In the function given above replace the 32-bit CRC by a 64-bit CRC; use a “magic” constant of

0xAED0AED0AED0011Full.]

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 30 (169)

Hash tables (part 3a, open addressing)

When a hash table uses open addressing the key and respective value are stored directly in the array:

key k
hash function h(k)

index i

key value index

0

1

s−1

This implies that n 6 s, and that it is necessary to resolve collisions by looking at other positions of the array

when position i, with i = h(k), does not contain the correct key. One possibility is to try
(
i + 1

)
mod s,(

i + 2
)

mod s, and so on, until either the desired key is found or an empty array position is found. Instead of

trying consecutive positions, it is also possible to try positions further apart, with jumps of j between positions:(
i+ j

)
mod s,

(
i+ 2j

)
mod s, and so on. For this to work is is necessary and sufficient that gcd(j, s) = 1,

which is ensured if 0 < j < s and if s is a prime number. Instead of using a fixed j, in double hashing each key

uses its own j, computed by another hash function.

Open addressing has several major disadvantages:

• the hash table cannot have more that s keys

• when the hash table is nearly full and there are collisions the worst search time can be quite large

• it is difficult to remove keys from the hash table

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 31 (170)

Hash tables (part 3b, open addressing)

The following C code exemplifies one way to perform a key search in a hash table that uses open addressing (compare

to similar code that used separate chaining, presented in part 4b):

typedef struct hash_data

{

char key[10]; // empty when key[0] = '\0'

int value;

}

hash_data;

#define hash_size 1009u

hash_data hash_table[hash_size];

hash_data *find_data(const char *key)

{

unsigned int idx;

idx = hash_function(key,hash_size);

while(hash_table[idx].key[0] != '\0' && strcmp(key,hash_table[idx].key) != 0)

idx = (idx + 1u) % hash_size; // try the next array position

return (hash_table[idx].key[0] == '\0') ? NULL : &hash_table[idx];

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 32 (171)

Hash tables (part 4a, separate chaining)

When the hash table uses chaining, sometimes also called separate chaining, the array stores pointers to the heads

of linked lists. For each key the hash function specifies in which list we will operate (search, insert or remove). Of

course, it is possible to replace the linked lists by a more sophisticated data structure, such as a binary search tree

(or even another hash table!), that provides the same operations but with lower computational complexity.

key k
hash function h(k)

index i

linked list heads

key value next

. . .

︸ ︷︷ ︸
linked list

When separate chaining is being used, the main purpose of the hash function is to distribute the keys as evenly an

possible among the s positions of the array. A good spread implies a small number of collisions, and so a search

operation will be fast. (If linked lists are being used, the worst search time is proportional to the length of the longest

linked list.)

Because linked lists are dynamic data structures, a hash table that uses them can store more keys that the size of the

array. The average search time will be max(1, n/s) if all keys are equally probable. So, the performance of a hash

table implemented with separate chaining will degrade gracefully if its array is under-sized

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 33 (172)

Hash tables (part 4b, separate chaining)

The following C code exemplifies one way to perform a key search in a hash table that uses separate chaining (compare

to similar code that used open addressing):
typedef struct hash_data

{

struct hash_data *next; // for the linked list

char key[10];

int value;

}

hash_data;

#define hash_size 1009u

hash_data *hash_table[hash_size];

void init_hash_table(void)

{

for(unsigned int idx = 0u;idx < hash_size;idx++)

hash_table[idx] = NULL;

}

hash_data *find_data(const char *key)

{

unsigned int idx = hash_function(key,hash_size);

hash_data *hd = hash_table[idx];

while(hd != NULL && strcmp(key,hd->key) != 0)

hd = hd->next;

return hd;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 34 (173)

Hash tables (part 4c, separate chaining)

The following C code exemplifies how to allocate a new hash_data structure:

#include <stdio.h>

#include <stdlib.h>

hash_data *new_hash_data(void)

{

hash_data *hd = (hash_data *)malloc(sizeof(hash_data));

if(hd == NULL)

{

fprintf(stderr,"Out of memory\n");

exit(1);

}

return hd;

}

The following C code exemplifies how to visit all nodes of a hash table:

void visit_all(void)

{

unsigned int i;

hash_data *hd;

for(i = 0u;i < hash_size;i++)

for(hd = hash_table[i];hd != NULL;hd = hd->next)

visit(hd);

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 35 (174)

Hash tables (part 4d, separate chaining)

The following C code presents a more efficient way to allocate a new hash_data structure:
hash_data *free_hash_data = NULL;

hash_data *new_hash_data(void)

{

if(free_hash_data == NULL)

{

const int n_nodes = 100;

free_hash_data = (hash_data *)malloc((size_t)n_nodes * sizeof(hash_data));

if(free_hash_data == NULL)

{

fprintf(stderr,"Out of memory\n");

exit(1);

}

for(int i = 0;i < n_nodes;i++)

free_hash_data[i].next = (i + 1 < n_nodes) ? &free_hash_data[i + 1] : NULL;

}

hash_data *hd = free_hash_data;

free_hash_data = free_hash_data->next;

return hd;

}

void free_hash_data(hash_data *hd)

{

hd->next = free_hash_data;

free_hash_data = hd;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 36 (175)

Hash tables (part 5, perfect hash functions)

A perfect hash function is an hash function that does not generate any collisions. Perfect hash functions are desired

when the set of keys is fixed and known (for example, the reserved keywords of a programming language). In a

perfect hash function it is usually desired that s = n (to save space). As there are no collisions, the hash table is

best implemented using open addressing.

Although perfect hash functions are rare (recall the birthday paradox), it is not difficult to construct a perfect hash

function h(k), that maps k to one of the integers 0, 1, . . . , s − 1. Mathematically this can be expressed in a

more compact way by h : k 7→ {i}s−1
i=0 . The main idea is to use two distinct hash functions h1 : k 7→ {i}s−1

i=0

and h2 : k 7→ {i}t−1
i=0 and to use an auxiliary table T of size t. Indeed, when t is not too small (t ≈ s/2 works

well), and assuming that there are no key pairs that give rise to simultaneous collisions in the two hash functions, is

it usually possible to construct the table in such a way that

h(k) =
(
h1(k) + T [h2(k)]

)
mod s

is a perfect hash function. Note that for a key k without a collision in h2(k) it is possible to assign to h(k) any

desired value.

Let Ki be the set of keys for which h2 evaluates to i; mathematically we have Ki = { k : h2(k) = i }. The

table T can be constructed using a greedy approach by considering each Ki in turn, starting with the largest set and

ending with the smallest set (the size of a set is its number of elements). For each i one tries T [i] = 0, T [i] = 1,

and so on, until either s is reached (a failure!) or all the values of h(k), for k ∈ Ki, do not collide with the values

of h(k) for the k belonging to the sets already dealt with. Sets with 1 or 0 elements, done at the end, do not pose

any problem! In practice, this greedy approach works surprising well, if one is not too ambitious in the choice of t.

AED 2022/2023
Tomás Oliveira e Silva

Home P.05 JT.05I page 37 (176)

Elementary data structures (exercises)

— P.05 —

Summary:

• Stacks

• Singly-linked lists

• Queues

• Deques

• Doubly-linked lists

• Min-heap

• Priority queue

• Hash tables

AED 2022/2023
Tomás Oliveira e Silva

Home JT.05I P.05 page 1 (177)

Stacks

Extract the files aStack.h and aStack_demo.cpp from the archive P05.tgz. Study the generic implementation

of a stack (file aStack.h). The purpose of the program aStack_demo.cpp is to verify if the parentheses of each

of its text arguments are balanced. When called as follows (warning: copying and pasting may not work properly on

the following line; if it does not work the accute accent is the culprit)
./aStack_demo 'abc' 'a(b)' 'a(b' 'a)b' 'a(b(c)(d((ef)g))h)i'

it should produce the output
abc

good

a(b)

'(' at position 1 and matching ')' at position 3

good

a(b

unmatched '(' at position 1

bad

a)b

unmatched ')' at position 1

bad

a(b(c)(d((ef)g))h)i

'(' at position 3 and matching ')' at position 5

'(' at position 9 and matching ')' at position 12

'(' at position 8 and matching ')' at position 14

'(' at position 6 and matching ')' at position 15

'(' at position 1 and matching ')' at position 17

good

The code in aStack_demo.cpp is incomplete. Complete it using a stack.

Modify the aStack.h class so that the stack can grow as much as needed. (Hint: write a private member function

that resizes the stack, and start with a stack with a maximum size of, say, 100.)

AED 2022/2023
Tomás Oliveira e Silva

Home JT.05I P.05 page 2 (178)

Singly-linked Lists

Extract the files sList.h and sList_test.cpp from the archive P05.tgz. The file sList.h implements a generic

singly-linked list. Study it. Study also the file sList_test.cpp, that tests the correctness of the implementation in

sList.h.

Queues

Extract the files lQueue.h and lQueue_demo.cpp for the archive P05.tgz. The file lQueue.h contains a skeleton

of an implementation of a generic queue based on a singly-linked list. Complete the implementation and write code

to test it.

Deque

Implement a generic deque (double-ended queue) using an array. On a deque, insertion and deletion can occur at

both ends of the queue.

Doubly-linked lists

Work to be done at home: using the code in sList.h as starting point, implement a doubly-linked list. Hints:

• the move() member function can be improved, but that is not strictly necessary,

• the various insert and remove member functions have to be modified.

• the computational complexity of some of these functions may change!

AED 2022/2023
Tomás Oliveira e Silva

Home JT.05I P.05 page 3 (179)

Min-heap

Using the code presented in T.05 lecture as inspiration, implement a min-heap in C. Use the min-heap to sort an

array of integers in decreasing order.

Priority queue

Using your min-heap, implement a priority queue (assume that lower values have higher priorities). Test it.

Hash tables

Using the code presented in the T.05 lecture as inspiration, complete the implementation (in C) of a hash table (with

separate chaining) capable of storing (key,value) pairs, in which the key is a string with at most 64 characters and

in which the value is of type T. An incomplete implementation is stored in the file hash_table.h (P05.tgz). Use

the hash table to count the number of times each word occurs in the text file SherlockHolmes.txt1 (get it from

P02.tgz). Use as keys the words, and as values the number of times each one occurs. The file count_words.c

contains an incomplete implementation; finish it! Which word appears more times?

1Source: http://sherlock-holm.es.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.05I P.05 page 4 (180)

Searching
— T.06 —

Summary:

• Searching unordered data (in an array, in a linked

list, in a binary tree, or in a hash table)

• How to improve the search time (data reordering)

• Searching ordered data (in an array — binary search

— or in an ordered binary tree)

• Exercises

Recommended bibliography for this lecture:

• Analysis of Algorithms, Jeffrey J. McConnell, second edi-
tion, Jones and Bertlett Publishers, 2008.

• Introduction to Algorithms, Thomas H. Cormen, Charles
E. Leiserson, Ronald L. Rivest, and Clifford Stein, third edi-
tion, The MIT press, 2009.

• Algorithms, Robert Sedgewick and Kevin Wayne, fourth
edition, Addison Wesley, 2011

• Estruturas de Dados e Algoritmos em C, António
Adrego da Rocha, terceira edição, FCA.

AED 2022/2023
Tomás Oliveira e Silva

Home P.06 JT.06I page 1 (181)

Searching unordered data (part 1, array and linked list)

Searching for a certain piece of information when that information is not organized may require a complete pass over

all data. That is an O(n) operation. (If the information is stored in a hash table of appropriate size, searching for a

given piece of information is, on average, a O(1) operation. This is descriped in detail in the T.05 slides.)

On an array, that can be done in as follows (the function returns the first index i for which data[i] == value, or

−1 if none exists):

int find(T *data,int data_size,T value)

{

int i;

for(i = 0;i < data_size && data[i] != value;i++)

;

return (i < data_size) ? i : -1;

}

On a linked list, it can be done in the following way (the function returns a pointer to the first node n for which

n->data == value, or NULL if none exists):

node *find(node *head,T value)

{

while(head != NULL && head->data != value)

head = head->next;

return head;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.06 JT.06I page 2 (182)

Searching unordered data (part 2, binary tree and hash table)

On an (unordered) binary tree, searching for a node n for which n->data == value can be done in the following

way (note the use of recursion):

node *find(node *n,T value)

{

node *nn;

if(n == NULL || n->data == value)

return n;

if(n->left != NULL && (nn = find(n->left,value)) != NULL)

return nn;

if(n->right != NULL && (nn = find(n->right,value)) != NULL)

return nn;

return NULL;

}

If this function does not return NULL then it returns a pointer to one node that satisfies n->data == value (in an

unordered tree, the concept of first is not well defined).

[Homework: It more than one tree node with the same value exist, which one is returned by this function?]

Of course, searching for unordered information in a hash table can be done in an efficient way. After all, the hash

function will restrict the search to all entries that collide with the entry where the information we are looking for is

located.

AED 2022/2023
Tomás Oliveira e Silva

Home P.06 JT.06I page 3 (183)

How to improve the search time

For unordered data, the search time can be improved if the number of queries for some data items is not uniformly

distributed (check the example near the end of the T.04 lecture).

One possible way to improve the average search time consists of reordering the information after each search, so that

the data item that was found becomes closer to the beginning of the relevant data structure. For arrays its index

becomes smaller, for linked lists its node becomes closer to the head of the list, and for binary trees its node becomes

closer to the root of the tree.

The following function does this for an array:

int self_optimizing_find(T *data,int data_size,T value)

{

int i;

for(i = 0;i < data_size && data[i] != value;i++)

;

if(i > 0 && i < data_size)

{

T tmp = data[i];

data[i] = data[i - 1];

data[--i] = tmp;

}

return (i < data_size) ? i : -1;

}

Other optimizations are possible. For example, if the same query has a tendency to be performed two or more times

in a row, it will be advantageous to store (in a static variable) the result of the last query.

AED 2022/2023
Tomás Oliveira e Silva

Home P.06 JT.06I page 4 (184)

Searching ordered data (part 1a, array – binary search)

If the data is sorted in increasing (or decreasing) order, searching for a specific value can become a O(logn)

operation. In the case where the information is stored in an array, the search can be performed using an algorithm

known as binary search. For following C code presents one of its possible implementations.

int binary_search(T *data,int data_size,T value)

{

int i_low = 0;

int i_high = data_size - 1;

int i_middle;

while(i_low <= i_high)

{

i_middle = (i_low + i_high) / 2;

if(value == data[i_middle])

return i_middle; // this may not be the smallest possible index ...

if(value > data[i_middle])

i_low = i_middle + 1;

else

i_high = i_middle - 1;

}

return -1;

}

If the data is approximately uniformly distributed, it may be better to select the i_middle index by performing a

linear interpolation between the points (i_low,data[i_low]) and (i_high,data[i_high]); for an y coordinate

of value the corresponding x coordinate should be (close to) i_middle.

AED 2022/2023
Tomás Oliveira e Silva

Home P.06 JT.06I page 5 (185)

Searching ordered data (part 1b, array – “improved” binary search)

The binary search function presented in the previous slide can be made to return the first index i for which

data[i] == value (or −1 if none exists). One possible way of doing this is as follows:

int binary_search(int *data,int data_size,int value)

{

int i_low = -1; // off by one

int i_high = data_size; // off by one

int i_middle;

while(i_low + 1 != i_high)

{

//

// loop invariants: data[i_high] >= value and data[i_low] < value

// (by convention, data[-1] = -infinity and data[data_size] = +infinity)

//

i_middle = (i_low + i_high) / 2;

if(data[i_middle] < value)

i_low = i_middle;

else

i_high = i_middle;

}

return (i_high >= data_size || data[i_high] != value) ? -1 : i_high;

}

[Homework: Compare (empirically) the average number of loop iterations performed by the two binary search

functions given in this and in the previous slide. Which one is better? Modify the function given in this slide so that

it returns the last index in case of a match.]

AED 2022/2023
Tomás Oliveira e Silva

Home P.06 JT.06I page 6 (186)

Searching ordered data (part 2, ordered binary tree)

Searching for information in an ordered binary tree can be done in the following way (C code, compare with the

unordered case given previously):

node *find_recursive(node *root,T value)

{

if(root == NULL || root->data == value)

return root;

return find_recursive((value < root->data) ? root->left : root->right,value);

}

It will be a O(logn) operation if the binary tree is “balanced,” but it can be an O(n) operation in the worst

possible case if the binary tree is completely unbalanced (with all its left links NULL or all its right links NULL).

A non-recursive implementation is also possible (in this case, it is simpler and faster):

node *find_non_recursive(node *root,T value)

{

while(root != NULL && root->data != value)

root = (value < root->data) ? root->left : root->right;

return root;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.06 JT.06I page 7 (187)

Searching (exercises)

— P.06 —

The compressed tar archive P06.tgz contains several binary search implementations. Study them.

Homework challenge: Implement a binary search routine that returns the largest index for which the corresponding

array data is smaller than or equal to the searched for value. If the searched for value is smaller than the first array

element return −1.

AED 2022/2023
Tomás Oliveira e Silva

Home JT.06I P.06 page 1 (188)

Sorting
— T.07 —

Summary:

• Coding conventions

• Bubble sort and shaker sort

• Insertion sort and Shell sort

• Quick sort

• Merge sort

• Heap sort

• Tree sort

• Other sorting routines (rank sort, selection sort)

• Computational complexity summary

Highly recommended bibliography for this lecture:

• Algorithms, Robert Sedgewick and Kevin Wayne, fourth
edition, Addison Wesley, 2011

Recommended bibliography for this lecture:

• Analysis of Algorithms, Jeffrey J. McConnell, second edi-
tion, Jones and Bertlett Publishers, 2008.

• Introduction to Algorithms, Thomas H. Cormen, Charles
E. Leiserson, Ronald L. Rivest, and Clifford Stein, third edi-
tion, The MIT press, 2009.

• Estruturas de Dados e Algoritmos em C, António
Adrego da Rocha, terceira edição, FCA.

Other useful stuff (on the web):

• Visualization (animation) of how some algorithms work
(see for example the animations in http://www.sorting-
algorithms.com/.

• Another algorithm animation resource.

• Description and useful information about many sorting algo-
rithms.

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 1 (189)

http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
https://visualgo.net/en
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/algoen.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/algoen.htm

Coding conventions

The sorting routines that will be presented in the next slides are all called with the same arguments. They all have

three arguments (in this order):

T *data : a pointer to the beginning of the array where the data to be sorted is located.

Each element of the array is of type T. Because the C programming language does not have templates, in practice

T will have to be replaced by the actual data type. (The data type has to allow comparisons.)

int first : the index of the first element of the array that will be sorted.

int one after last : one plus the index of the last element of the array that will be sorted.

So, only the elements data[first], data[first + 1], . . . , data[one_after_last - 1] will actually be

sorted by the function. All other elements will be left untouched. In other words, the index sorting interval will be

[first, one after last[, which is closed on the left and open on the right. To sort the entire array set first to

zero and one_after_last to the number of elements of the array.

This way of doing things, which is similar to how ranges work in the Python programming language, is quite convenient

when splitting the array into smaller parts (say, to sort each one of them separately).

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 2 (190)

Bubble sort and shaker sort (part 1a, bubble sort description)

The bubble sort algorithm, although very simple, is almost always worse that other sorting algorithms (such as the

insertion sort algorithm to be explained later). It has, however, pedagogical interest. It compares adjacent array

entries and exchanges them if they are nor ordered. It can be described as follows:

To sort a[0],. . . ,a[n-1] in increasing order do:

1. [Do pass.] For i equal to 0, 1, . . . , n− 2 do step 2. When that is finished, go to step 3.

2. [Compare and exchange.] If a[i] is larger than a[i+1] exchange them.

3. [Terminate or do it again.] Terminate the algorithm if no exchange was done in the last pass (steps 1 and 2).

Otherwise, go to step 1 and do it all again.

If the array is already sorted, only one pass is necessary (to confirm that it is already sorted). If the array is sorted in

decreasing order, n passes are necessary (each pass moves the largest array element not yet in its place to its proper

place). In general, the computational complexity of the best, average, and worst cases of the bubble sort algorithm

are O(n), O(n2), and O(n2), respectively.

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 3 (191)

Bubble sort and shaker sort (part 1b, bubble sort code)

The following C code is one possible implementation of the bubble sort algorithm. (In the slides of this lecture, all

sorting algorithms will have the same interface.)
void bubble_sort(T *data,int first,int one_after_last)

{ // sort data[first],...,data[one_after_last-1] in increasing order

int i,i_low,i_high,i_last;

i_low = first;

i_high = one_after_last - 1;

while(i_low < i_high)

{

for(i = i_last = i_low;i < i_high;i++)

if(data[i] > data[i + 1])

{

T tmp = data[i];

data[i] = data[i + 1];

data[i + 1] = tmp;

i_last = i;

}

i_high = i_last;

}

}

To sort an array named abc with 10 elements, just do bubble_sort(abc,0,10).

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 4 (192)

Bubble sort and shaker sort (part 2a, shaker sort description)

In the bubble sort algorithm a small entry near the end of the array may require many passes until it migrates to

its final position. The so-called cocktail-shaker sort algorithm (it also only has pedagogical interest) attempts to

ameliorate this problem by doing “up” and “down” passes. It can be described as follows:

To sort a[0],. . . ,a[n-1] in increasing order do:

1. [Do up pass.] For i equal to 0, 1, . . . , n− 2 do step 2. When that is finished, go to step 3.

2. [Compare and exchange.] If a[i] is larger than a[i+1] exchange them.

3. [Terminate or do down pass.] Terminate the algorithm if no exchange was done in the last up pass (steps 1

and 2). Otherwise, go to step 4.

4. [Do down pass.] For i equal to n− 1, n− 2, . . . , 1 do step 5. When that is finished, go to step 6.

5. [Compare and exchange.] If a[i] is smaller than a[i-1] exchange them.

6. [Terminate or do it again.] Terminate the algorithm if no exchange was done in the last down pass (steps 4

and 5). Otherwise, go to step 1 and do it all again.

Like bubble sort, the computational complexity of the best, average, and worst cases of the shaker sort algorithm are

O(n), O(n2), and O(n2), respectively.

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 5 (193)

Bubble sort and shaker sort (part 2b, shaker sort code)

The following C code is one possible implementation of the shaker sort algorithm.
void shaker_sort(T *data,int first,int one_after_last)

{

int i,i_low,i_high,i_last;

i_low = first;

i_high = one_after_last - 1;

while(i_low < i_high)

{

// up pass

for(i = i_last = i_low;i < i_high;i++)

if(data[i] > data[i + 1])

{

T tmp = data[i];

data[i] = data[i + 1];

data[i + 1] = tmp;

i_last = i;

}

i_high = i_last;

// down pass

for(i = i_last = i_high;i > i_low;i--)

if(data[i] < data[i - 1])

{

T tmp = data[i];

data[i] = data[i - 1];

data[i - 1] = tmp;

i_last = i;

}

i_low = i_last;

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 6 (194)

Insertion sort and Shell sort (part 1, insertion sort description and code)

Insertion sort, and its very simple improvement Shell sort, are very simple sorting algorithms that can be used in practice

to sort small arrays (for larger arrays other sorting algorithms, with better asymptotic computational complexity, should

be used). Insertion sort can be described as follows:

To sort a[0],. . . ,a[n-1] in increasing order do:

1. [Do pass.] For i equal to 1, 2, . . . , n− 1 do step 2. When that is finished, terminate the algorithm.

2. [Insert.] For j equal to i, i− 1, . . . , 1 and while a[j] is smaller than a[j-1] exchange a[j] with a[j-1].

Like the bubble and shaker sort algorithms, the computational complexity of the best, average, and worst cases of the

insertion sort algorithm are O(n), O(n2), and O(n2), respectively. However, the multiplicative constants hidden

behind the asymptotic notation are better (smaller) for the insertion sort algorithm.

The following C code is one possible implementation of the insertion sort algorithm.
void insertion_sort(T *data,int first,int one_after_last)

{

int i,j;

for(i = first + 1;i < one_after_last;i++)

{

T tmp = data[i];

for(j = i;j > first && tmp < data[j - 1];j--)

data[j] = data[j - 1];

data[j] = tmp;

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 7 (195)

Insertion sort and Shell sort (part 2, Shell sort description and code)

The Shell sort algorithm is nothing more that successive applications of the insertion sort algorithm to sub-arrays of

the entire array. In a pass with stride h the entire array a[0],a[1],. . . ,a[n-1] is subdivided into the sub-arrays

a[0],a[h+0],a[2h+0],. . . a[1],a[h+1],a[2h+1],. . . · · · a[h-1],a[2h-1],a[3h-1],. . .

Any sequence of strides is possible, as long as the last one is a stride of 1 (i.e., the last pass is just a single insertion

sort). The computational complexity of this algorithm depends on the sequence of strides that is used (the best

sequences of strides is not known). There are sequences of strides that make the algorithm o(n2). For example,

when h(s) = 9 · 2s − 9 · 2s/2 + 1 when s is even and h(s) = 8 · 2s − 6 · 2(s+1)/2 + 1 when it is odd, where

s is the number of the pass (counting starts at the last one) gives rise to a O(n4/3) algorithm.

The following C code is one possible implementation of the Shell sort algorithm.
void shell_sort(T *data,int first,int one_after_last)

{

int i,j,h;

for(h = 1;h < (one_after_last - first) / 3;h = 3 * h + 1)

; // when h is choosen in this way the number of passes is O(log n)

while(h >= 1)

{ // for each stride h, use insertion sort

for(i = first + h;i < one_after_last;i++)

{

T tmp = data[i];

for(j = i;j - h >= first && tmp < data[j - h];j -= h)

data[j] = data[j - h];

data[j] = tmp;

}

h /= 3;

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 8 (196)

Quick sort (part 1, description)

In practice, a well implemented quick sort algorithm appears to be the fastest sorting algorithm. It is a recursive

algorithm that can be described as follows:

To sort a[lo],. . . ,a[hi-1] in increasing order do:

1. [Terminal case.] If hi− lo is smaller than a predetermined value (say, 20), use insertion sort to sort the array

and terminate the algorithm.

2. [Select pivot.] Select one of the array elements to be the “pivot”

3. [Partition array.] Subdivide the array into three parts: the array elements that are smaller than the pivot (these

are placed at the beginning), the pivot, or array elements equal to the pivot in certain implementations (these

are placed at the middle), and the array elements that are larger than the pivot (these are placed at the end).

4. [Recurse.] Apply the same algorithm to the smaller than the pivot and to the larger than the pivot parts of the

array. After doing this terminate the algorithm.

The partition step requires O(n) work, where n = hi − lo (see C code of the next slides). The computational

complexity of the best, average, and worst cases of the quick sort algorithm are O(n logn), O(n logn), and

O(n2), respectively. Without care, the worst case occurs when the array is already sorted!

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 9 (197)

Quick sort (part 2, code)

The following C code is one possible implementation of the quick sort algorithm.
void quick_sort(T *data,int first,int one_after_last)

{

int i,j,one_after_small,first_equal,n_smaller,n_larger,n_equal;

T pivot,tmp;

if(one_after_last - first < 20)

insertion_sort(data,first,one_after_last);

else

{

//

// select pivot (median of three, the pivot's position will be one_after_last-1)

//

define POS1 (first)

define POS2 (one_after_last - 1)

define POS3 ((first + one_after_last) / 2)

define TEST(pos1,pos2) do if(data[pos1] > data[pos2]) \

{ tmp = data[pos1]; data[pos1] = data[pos2]; data[pos2] = tmp; } \

while(0)

TEST(POS1,POS2); // bitonic

TEST(POS1,POS3); // sort of

TEST(POS2,POS3); // 3 items

undef POS1

undef POS2

undef POS3

undef TEST

— the code continues on the next slide —

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 10 (198)

— continuation of the code of the previous slide —
//

// 3-way partition. At the end of the while loop the items will be partitioned as follows:

// |first "smaller part"|one_after_small "larger part"|first_equal "equal part"|one_after_last

//

one_after_small = first;

first_equal = one_after_last - 1;

pivot = data[first_equal];

i = first;

while(i < first_equal)

if(data[i] < pivot)

{ // place data[i] in the "smaller than the pivot" part of the array

tmp = data[i];

data[i] = data[one_after_small]; // tricky! this does the right thing when

data[one_after_small] = tmp; // i == one_after_small and when i > one_after_small

i++;

one_after_small++;

}

else if(data[i] == pivot)

{ // place data[i] in the "equal to the pivot" part of the array

first_equal--;

tmp = data[i]; // this is known to be the pivot, but we do it in this way

data[i] = data[first_equal]; // to make life easier to those that need to adapt this

data[first_equal] = tmp; // code so that it deals with more complex data items

}

else

{ // data[i] becomes automatically part of the "larger than the pivot" part of the array

i++;

}

n_smaller = one_after_small - first;

n_larger = first_equal - one_after_small;

n_equal = one_after_last - first_equal;

— the code continues on the next slide —

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 11 (199)

— continuation of the code of the previous slide —
j = (n_equal < n_larger) ? n_equal : n_larger;

for(i = 0;i < j;i++)

{ // move the "equal to the pivot" part of the array to the middle

tmp = data[one_after_small + i];

data[one_after_small + i] = data[one_after_last - 1 - i];

data[one_after_last - 1 - i] = tmp;

}

//

// recurse

//

quick_sort(data,first,first + n_smaller);

quick_sort(data,first + n_smaller + n_equal,one_after_last);

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 12 (200)

Merge sort (part 1, description)

Merge sort is a recursive algorithm that can be described as follows:

To sort a[lo],. . . ,a[hi-1] in increasing order do:

1. [Terminal case.] If hi− lo is smaller than a predetermined value (say, 20), use insertion sort to sort the array

and terminate.

2. [Subdivide.] Subdivide the array into two nearly equal parts (the “first half” and the “second half”.

3. [Recurse.] Apply the same algorithm the two two halves

3. [Merge.] merge the two already sorted halves. After doing this terminate the algorithm.

The merge step requires O(n) work, where n = hi − lo (see C code in the next slide). The computational

complexity of the best, average, and worst cases of the merge sort algorithm are all O(n logn).

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 13 (201)

Merge sort (part 2, code)

The following C code is one possible implementation of the merge sort algorithm.
void merge_sort(T *data,int first,int one_after_last)

{

int i,j,k,middle;

T *buffer;

if(one_after_last - first < 40) // do not allocate less than 40 bytes

insertion_sort(data,first,one_after_last);

else

{

middle = (first + one_after_last) / 2;

merge_sort(data,first,middle);

merge_sort(data,middle,one_after_last);

buffer = (T *)malloc((size_t)(one_after_last - first) * sizeof(T)) - first; // no error check!

i = first; // first input (first half)

j = middle; // second input (second half)

k = first; // merged output

while(k < one_after_last)

if(j == one_after_last || (i < middle && data[i] <= data[j]))

buffer[k++] = data[i++];

else

buffer[k++] = data[j++];

for(i = first;i < one_after_last;i++)

data[i] = buffer[i];

free(buffer + first);

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 14 (202)

Heap sort (part 1, description)

The heap sort algorithm uses a max-heap (see the slides of the T.05 lecture). It can be described as follows:

To sort a[0],. . . ,a[n-1] in increasing order do:

1. [Construct heap.] For i = 0, 1, . . . , n− 1 put a[i] in the max-heap.

2. [Sort.] For i = n− 1, n− 2, . . . , 0 remove the largest element of the max-heap and store it in a[i]. After

doing this terminate the algorithm.

Given the way this algorithm is structured the array and the heap can share the same memory area. The computational

complexity of the best, average, and worst cases of the heap sort algorithm are, like for the merge sort algorithm, all

O(n logn). Heap sort, however, does not require extra space.

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 15 (203)

Heap sort (part 2, code)

The following C code is one possible implementation of the heap sort algorithm.
void heap_sort(T *data,int first,int one_after_last)

{

int i,j,k,n;

T tmp;

data += first - 1; // adjust pointer (data[first] becomes data[1])

n = one_after_last - first; // number of items to sort

//

// phase 1. heap construction

//

for(i = n / 2;i >= 1;i--)

for(j = i;2 * j <= n;j = k)

{

k = (2 * j + 1 <= n && data[2 * j + 1] > data[2 * j]) ? 2 * j + 1 : 2 * j;

if(data[j] >= data[k])

break;

tmp = data[j];

data[j] = data[k];

data[k] = tmp;

}

— the code continues on the next slide —

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 16 (204)

— continuation of the code of the previous slide —
//

// phase 2. sort (by successively removing the largest element)

//

while(n > 1)

{

tmp = data[1]; // largest

data[1] = data[n];

data[n--] = tmp;

for(j = 1;2 * j <= n;j = k)

{

k = (2 * j + 1 <= n && data[2 * j + 1] > data[2 * j]) ? 2 * j + 1 : 2 * j;

if(data[j] >= data[k])

break;

tmp = data[j];

data[j] = data[k];

data[k] = tmp;

}

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 17 (205)

Tree sort (part 1, description)

The tree sort algorithm uses an ordered binary tree (see the slides of the T.05 lecture). It can be described as follows:

To sort a[0],. . . ,a[n-1] in increasing order do:

1. [Construct tree.] For i = 0, 1, . . . , n− 1 put a[i] in the ordered binary tree.

2. [Sort.] Traverse the tree using an in-order depth-first algorithm (see the traverse_in_order_recursive

function in the T.05 lecture) and place the node contents back in a[i]. After doing this terminate the algorithm.

The computational complexity of the best and average cases of the tree sort algorithm are, like for the quick sort,

merge sort, and heap sort algorithms, O(n logn). The worst case of tree sort is, however, O(n2), just like quick

sort. This can happen when the when the input data is already in sorted order (either increasing of decreasing),

because it those cases the tree degenerates into a linked list. Repeated values also pose problems.

Using a balanced binary tree reduces the computational complexity of the worst case to O(n logn).

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 18 (206)

Other sorting routines (part 1: rank sort)

The rank sort algorithm sorts by first counting the number of elements of the array that are smaller than each given

element. This is called ranking, and gives the final sorted position of each element. Two extra arrays are needed: one

to store the rank and another to keep a copy of the initial array.

The following C code is one possible implementation of the “rank” sort algorithm.
void rank_sort(T *data,int first,int one_after_last)

{

int i,j,*rank;

T *buffer;

rank = (int *)malloc((size_t)(one_after_last - first) * sizeof(int)) - first; // no error check!

for(i = first;i < one_after_last;i++)

rank[i] = first;

for(i = first + 1;i < one_after_last;i++)

for(j = first;j < i;j++)

rank[(data[i] < data[j]) ? j : i]++;

buffer = (T *)malloc((size_t)(one_after_last - first) * sizeof(T)) - first; // no error check!

for(i = first;i < one_after_last;i++)

buffer[i] = data[i];

for(i = first;i < one_after_last;i++)

data[rank[i]] = buffer[i];

free(buffer + first);

free(rank + first);

}

This algorithm has a fixed computational complexity of Θ(n2).

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 19 (207)

Other sorting routines (part 2: selection sort)

The selection sort algorithm sorts an array of n elements by making n− 1 passes over the array. Each pass finds the

largest element of the still unsorted portion of the array and at the end of the pass swaps it with last active element

(the one at the end of the unsorted portion of the array).

The following C code is one possible implementation of the selection sort algorithm.
void selection_sort(T *data,int first,int one_after_last)

{

int i,j,k;

for(i = one_after_last - 1;i > first;i--)

{

for(j = first,k = 1;k <= i;k++)

if(data[k] > data[j])

j = k;

if(j < i)

{

T tmp = data[i];

data[i] = data[j];

data[j] = tmp;

}

}

}

This algorithm also has a fixed computational complexity of Θ(n2).

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 20 (208)

Computational complexity summary

The following table presents the computational complexity (of the number of comparisons and data movements) of

the best, average, and worst cases of the sorting algorithms described in this lecture (n is the array size).

algorithm best average worst comments

bubble sort O(n) O(n2) O(n2)

shaker sort O(n) O(n2) O(n2)

insertion sort O(n) O(n2) O(n2)

Shell sort ? ? ?

quick sort O(n logn) O(n logn) O(n2)

merge sort O(n logn) O(n logn) O(n logn) requires extra space

heap sort O(n logn) O(n logn) O(n logn)

tree sort O(n logn) O(n logn) O(n2) (*)

rank sort O(n2) O(n2) O(n2) requires extra space

selection sort O(n2) O(n2) O(n2)

(*) The worst case is reduced to (n logn) if a balanced ordered binary tree is used.

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 21 (209)

Ineffective sorts (spoiler)

StackSort connects to StackOverflow, searches for ’sort a list’,
and downloads and runs code snippets until the list is sorted.

AED 2022/2023
Tomás Oliveira e Silva

Home P.07 JT.07I page 22 (210)

https://m.xkcd.com/1185/
https://www.explainxkcd.com/wiki/index.php/1185:_Ineffective_Sorts

Sorting (exercises)

— P.07 —

The compressed tar archive P07.tgz contains an implementation of many sorting routines, written in the C program-

ming language, and a driver program that tests them and that measures their execution speed.

The sorting_routines program, when invoked with the command line option -measure, prints tables of the

execution time of each sorting routine to the terminal (standard output). Modify it so that it outputs each table to

a text file with a name related to the sorting routine being measured. For example, the bubble sort table could be

stored in a file named bubble_sort.txt.

Run the sorting_routines with the -test command line option. It should not output any error. Study how the

tests are made.

Run the sorting_routines with the -measure command line option. Maka graphs of the execution times of each

sorting routine (see example in the following page). Do their execution times grow like n2, or are their execution

times more like n logn? Which one is the fastest? Which one is the slowest?

Homework challenge: Implement quick sort and merge sort using linked lists. What advantages and disadvantages

do these implementations have when compared to implementations based on arrays?

AED 2022/2023
Tomás Oliveira e Silva

Home JT.07I P.07 page 1 (211)

Sorting (execution times)

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+01 1e+02 1e+03 1e+04 1e+05

Average execution times of some sorting routines (random data)

bubble sort
shaker sort

insertion sort
Shell sort
quick sort

merge sort
heap sort
tree sort
rank sort

selection sort

AED 2022/2023
Tomás Oliveira e Silva

Home JT.07I P.07 page 2 (212)

Algorithmic techniques
— T.08 —

Summary:

• Divide-and-conquer (DaC) and the master theorem

• DaC examples

• Dynamic programming (DP)

• DP examples

Recommended bibliography for this lecture:

• Analysis of Algorithms, Jeffrey J. McConnell, second edi-
tion, Jones and Bertlett Publishers, 2008.

• Introduction to Algorithms, Thomas H. Cormen, Charles
E. Leiserson, Ronald L. Rivest, and Clifford Stein, third edi-
tion, The MIT press, 2009.

• Estruturas de Dados e Algoritmos em C, António
Adrego da Rocha, terceira edição, FCA.

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 1 (213)

Divide-and-conquer (DaC)

The divide-and-conquer algorithmic technique consists of solving a problem recursively using the following method-

ology:

Divide — If the problem is small enough, solve it directly. Otherwise, subdivide it into smaller instances (at least

two, preferably of nearly equal size) of the same problem.

Conquer (recurse) — Solve each sub-problem using the same algorithm.

Combine — Construct the solution of the problem by combining the solutions of the sub-problems.

The Divide step can be trivial (almost nothing to do, just decide what subdivision to use), as in merge sort. The

Combine step can also be trivial (nothing to do), as in quick sort. In general, both steps are nontrivial.

Let T (n) be the effort required to solve a problem of size n, let f(n) be the effort needed to perform steps Divide

and Combine (again for a problem of size n), and let a be the number of sub-problems of size n/b that are done in

the Conquer step. Assigning an effort of 1 to problems of size n 6 n0, we have

T (n) =

1 for n 6 n0;

aT
(
n
b

)
+ f(n) otherwise.

The so-called master theorem provides solutions to this recursion in some cases:

• If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a)

• If f(n) = Θ(nlogb a logk n) for some k > 0, then T (n) = O(nlogb a logk+1 n)

• If f(n) = Ω(nlogb a+ε) for some constant ε > 0 and if af
(
n
b

)
6 cf(n) for some constant c < 1 and all

sufficiently large n, then T (n) = Θ
(
f(n)

)
.

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 2 (214)

Divide-and-conquer (examples of application of the master theorem)

Merge sort is an example of a divide-and-conquer algorithm for which f(n) = Θ(n) and a = b = 2. The second

case of the master theorem then says that T (n) = O(n logn).

In the improved multiplication method presented in lecture T.04, f(n) = Θ(n), because additions and subtractions

are O(n), a = 3, and b = 2. The first case of the master theorem then says that T (n) = O(nlog2 3).

In the improved matrix multiplication method also presented in lecture T.04, f(n) = Θ(n2), because matrix

additions and subtractions are O(n2), a = 7, and b = 2. The first case of the master theorem then says that

T (n) = O(nlog2 7).

In the recursive exponentiation algorithms also presented in lecture T.04, and in the binary search algorithm presented

in lecture T.06, f(n) = Θ(1), a = 1, and b = 2. The second case of the master theorem then says that

T (n) = O(logn).

Homework: Apply the master theorem to each of the following recurrences:

T (n) = 2T
(
n
2

)
+ n4 Possible solution: In this case we have a = 2 — the factor before T (·) on the right

hand side — b = 2 — the divisor of n inside T (·) — and f(n) = n4.

Since logb a = log2 2 = 1, we have f(n) = Θ(n1+3), that is,

ε = 3. Since ε > 0, we are possibly in the last case of the master

theorem. This will be so if and only if af
(
n
b

)
6 cf(n), for some

c < 1. In this case af
(
n
b

)
= 1

8
f(n), so any c larger than 1

8
will do,

and the third case of the master theorem can be applied. It follows that

T (n) = Θ(n4).

T (n) = T
(

7n
10

)
+ n

T (n) = 16T
(
n
4

)
+ n2

T (n) = 7T
(
n
3

)
+ n2

T (n) = 7T
(
n
2

)
+ n2

T (n) = 2T
(
n
4

)
+
√
n

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 3 (215)

DaC examples (part 1a, selection)

Given an array of (unsorted) numbers, select the k-th smallest array element. For example, for k = 0 the smallest

array element is the one selected, for k equal to the size of the array minus one the largest array element is the one

selected, and for k equal to half the size of the array the median of the arrays elements is the one selected. By sorting

the array in increasing order, a task that requires O(n logn) time, each selection takes O(1) time.

If only one selection is needed, it is not necessary to sort the array. Using the divide-and-conquer paradigm, selection

can be done in O(n) average time. The following function does the job in O(n2) time (without sorting!), and so

it should be used only for very small arrays:
int select_v1(int *a,int n,int k)

{ // O(n^2) algorithm, could be improved to O(n log n)

for(int i = 0;i < n;i++)

{

int rank = 0;

for(int j = 0;j < n;j++)

if(a[j] < a[i] || (a[j] == a[i] && j < i))

rank++;

if(rank == k)

return a[i];

}

abort(); // if 0 <= k < n, this point cannot be reached

}

It will be used by the divide-and-conquer function of the next slide to deal with the terminal cases (i.e., the small

ones). For that function, and assuming that the pivot splits the array in approximately equal-sized smaller and larger

parts, we have T (n) = T (n/2) + O(n), which, according to the master theorem, gives T (n) = O(n).

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 4 (216)

DaC examples (part 1b, selection using DaC)

The following code solves the selection problem using the divide-and-conquer paradigm. Its main idea is the choose

a pivot element at random, and to split the array into three parts: smaller than, equal to, and larger than the pivot

(just like quick sort). If the desired selection lies on the smaller or larger parts, then the same problem is solved for

the appropriate part (recursion!).
int select_v2(int *a,int n,int k)

{ // O(n) on average, at worst O(n^2)

int i,j,pivot,n_smaller,n_larger,*aa;

if(n <= 10)

return select_v1(a,n,k);

pivot = a[(int)rand() % n]; // choose pivot at random

for(n_smaller = n_larger = i = 0;i < n;i++) // count number of elements

if(a[i] < pivot) n_smaller++; // smaller than the pivot

else if(a[i] > pivot) n_larger++; // larger than the pivot

if(k >= n_smaller && k < n - n_larger)

return pivot; // bingo!

if(k < n_smaller)

{ // divide (keep only the elements smaller than the pivot) and conquer

aa = (int *)malloc((size_t)n_smaller * sizeof(int));

for(i = j = 0;i < n;i++) if(a[i] < pivot) aa[j++] = a[i];

i = select_v2(aa,n_smaller,k);

}

else

{ // divide (keep only the elements larger than the pivot) and conquer

aa = (int *)malloc((size_t)n_larger * sizeof(int));

for(i = j = 0;i < n;i++) if(a[i] > pivot) aa[j++] = a[i];

i = select_v2(aa,n_larger,k - (n - n_larger));

}

free(aa);

return i;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 5 (217)

DaC examples (part 2a, the maximum-sum sub-array problem)

Given an array of numbers, the maximum-sum sub-array problem consists of finding the maximum sum of consecutive

elements of the array. Let a[0], . . . , a[n−1] be the elements of the array (of size n). Mathematically, the problem

is to solve

max
06i6j<n

j∑
k=i

a[k] and arg max
06i6j<n

j∑
k=i

a[k].

The notation arg max denotes the argument where the maximum occurs, or one argument chosen arbitrarily if the

maximum occurs in several places; in this case the argument is the pair (i, j), with 0 6 i 6 j < n. The following

code solves this problem in O(n2) time:
typedef struct { int first; int last; int sum; } ret_val;

ret_val max_sum_v1(int *a,int first,int one_after_last)

{

ret_val r = { first,first,a[first] };

for(int i = first;i < one_after_last;i++)

for(int sum = 0,j = i;j < one_after_last;j++)

{

sum += a[j];

if(sum > r.sum)

{

r.first = i;

r.last = j;

r.sum = sum;

}

}

return r;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 6 (218)

DaC examples (part 2b, the maximum-sum sub-array problem using DaC)

The maximum-sum sub-array either lies completely in the first half of the array, either lies completely in the second

half of the array, or it must cross the middle of the array. This last case can be solved in O(n) time, so the following

code solves the problem in O(n logn) time using divide-and-conquer:
ret_val max_sum_v2(int *a,int first,int one_after_last)

{

int i,sum,max,middle;

ret_val r1,r2,r3;

if(one_after_last - first < 20)

return max_sum_v1(a,first,one_after_last);

else

{

// divide

middle = (first + one_after_last) / 2;

// recurse

r1 = max_sum_v2(a,first,middle);

r2 = max_sum_v2(a,middle,one_after_last);

// combine

sum = max = a[r3.first = middle - 1];

for(i = middle - 2;i >= first;i--) if((sum += a[i]) > max) { max = sum; r3.first = i; }

r3.sum = max; // best left half (at least one element)

sum = max = a[r3.last = middle];

for(i = middle + 1;i < one_after_last;i++) if((sum += a[i]) > max) { max = sum; r3.last = i; }

r3.sum += max; // add best right half (at least one element)

}

if(r2.sum > r1.sum)

r1 = r2;

if(r3.sum > r1.sum)

r1 = r3;

return r1;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 7 (219)

DaC examples (part 2c, a better solution to the maximum-sum sub-array problem)

In the particular case of the maximum-sum sub-array problem the divide-and-conquer programming paradigm does

not produce an algorithm with the best computational complexity. The following function solves the problem in only

O(n) time! This is achieved by scanning the array once, keeping track of the best (largest) sum of consecutive array

elements ending at the scan location:
ret_val max_sum_v3(int *a,int first,int one_after_last)

{

int i,max_sum_ending_here,first_max_sum_ending_here;

ret_val r = { first,first,a[first] };

max_sum_ending_here = a[first_max_sum_ending_here = first];

for(i = first + 1;i < one_after_last;i++)

{

if(max_sum_ending_here > 0)

max_sum_ending_here += a[i]; // max_sum_ending_here + a[i] is better than just a[i]

else

max_sum_ending_here = a[first_max_sum_ending_here = i]; // just a[i] is better

if(max_sum_ending_here > r.sum)

{

r.first = first_max_sum_ending_here;

r.last = i;

r.sum = max_sum_ending_here;

}

}

return r;

}

This solution can be considered to be a particular case of the application of the dynamic programming paradigm (this

case does not require memoization!), to be discussed in the next slides.

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 8 (220)

Dynamic programming (DP)

The dynamic programming technique solves a problem by combining the solutions of smaller problems (solved re-

cursively). It is useful when these sub-problems share sub-sub-problems. Time efficiency is gained, at the expense

of extra storage space, by solving each sub-problem only once and by storing its output in an array, or other data

structure, for later reuse (this is called memoization).

Dynamic programming is usually used to solve optimization problems for which the solution to an order n problem

can be found by combining the solutions to one or more order n− 1 problems. It can be applied with advantage:

• if an optimal solution to an order n problem contains within it optimal solutions to order n− 1 problems, which

in turn contain optimal solutions to order n− 2 problems, and so on;

• when the solution of the sub-problems share sub-sub-problems.

If a problem does not have these two characteristics then the dynamic programming technique either cannot be applied

or it will not solve the problem efficiently.

For example, consider a network of roads connecting several cities. The problem of finding the shortest route between

two cities A and B can be solved using dynamic programming, because if that route passes through city C then we

can be assured that the route from A to C is the shortest possible (if that were not the case we could produce a

better solution by replacing the route from A to C by the shorter route). On the other hand, the problem of finding

the longest route that does not visit a city more than once (that constraint is not present in the smallest route

problem, because there a route with a loop cannot be optimal) cannot be solved by dynamic programming, because

if that route passes through city C then the route from A to C might not be the longest route between these two

cities (that route may pass through a city that appears later in the longest route from A to B).

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 9 (221)

DP examples (part 1, two simple dynamic programming examples)

The Fibonacci numbers are defined by the recursion

Fn = Fn−1 + Fn−2, n > 1,

with initial conditions F0 = 0 and F1 = 1. They can

be computed as follows:
int F_v1(int n)

{

return (n < 2) ? n : F_v1(n - 1) + F_v1(n - 2);

}

Using a dynamic programming approach, i.e., by stor-

ing and reusing previously computed results, the previous

code becomes much faster at the expense of a small

amount of memory:
int F_v2(int n)

{

static int Fv[50] = { 0,1 };

if(n > 1 && Fv[n] == 0)

Fv[n] = F_v2(n - 1) + F_v2(n - 2);

return Fv[n];

}

The same trick can be used to compute the binomial co-

efficients (number of combinations of n objects taken k

at a time), denoted by Cn
k , which are given by

Cn
k =

n!

k!(n− k)!
, if 0 6 k 6 n,

0, otherwise (by convention).

Using this formula directly may lead to arithmetic over-

flow, so one can use the following recursive formula in-

stead (Pascal’s triangle):

Cn
k =

0, if k < 0 or k > n,

1, if k = 0 or k = n,

Cn−1
k−1 + Cn−1

k , otherwise.

This gives rise to the following function:
int C(int n,int k)

{

static int Cv[100][100];

if(k < 0 || k > n) return 0;

if(k == 0 || k == n) return 1;

if(Cv[n][k] == 0)

Cv[n][k] = C(n - 1,k - 1) + C(n - 1,k);

return Cv[n][k];

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 10 (222)

DP examples (part 2a, the maximum-sum scattered-sub-array problem)

Given an array of positive numbers, the maximum-sum scattered-sub-array problem consists of finding the maximum

sum of elements of the array, with the restriction that adjacent array elements cannot both contribute to the sum.

(Alternative problem formulation: given a line of n bottles with volumes v0, . . . , vn−1, drink as much as you can,

given that you cannot drink from adjacent bottles.)

This problem can be solved easily for size n if the solutions for the sizes n− 1 and n− 2 are known, as illustrated

by the following recursive function:
int max_scattered_sum_v1(int *v,int n)

{

if(n == 1)

return v[0]; // one is better than nothing

if(n == 2)

return (v[0] > v[1]) ? v[0] : v[1]; // choose the larger of the two

int t1 = max_scattered_sum_v1(v,n - 2) + v[n - 1]; // use v[n - 1], cannot use v[n - 2]

int t2 = max_scattered_sum_v1(v,n - 1); // do not use v[n - 1], can use v[n - 2]

return (t1 > t2) ? t1 : t2; // choose the larger of the two

}

The number of function calls done by max_scattered_sum_v1() is exactly the same as the number of function

calls done by F_v1() of the previous slide. As that number grows exponentially, this function is useless for n greater

than, say, 40. The next slide shows how this severe handicap can be eliminated (memoization saves the day!).

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 11 (223)

DP examples (part 2b, the maximum-sum scattered-sub-array problem with DP)

To speed up max_scattered_sum_v1() enormously simply record and reuse its return value. This gives rise to the

function max_scattered_sum_v2(), presented below on the left-hand side (notice that it is possible to reset the

memoized data by using special values of the function arguments). In this case it is also possible to get rid of the

memoized data entirely, as illustrated in max_scattered_sum_v3(), presented below on the right-hand side.

int max_scattered_sum_v2(int *v,int n)

{ // O(n) on first call, O(1) on subsequent calls

static int r[1001]; // n cannot be larger than 1000

if(v == NULL || n <= 0 || n > 1000)

{ // invalidate memoized data

for(int i = 0;i <= 1000;i++)

r[i] = -1;

return -1;

}

if(r[n] < 0)

{ // compute for the first time

if(n == 1)

r[n] = v[0];

else if(n == 2)

r[n] = (v[0] > v[1]) ? v[0] : v[1];

else

{

int t1 = max_scattered_sum_v2(v,n - 2) + v[n - 1];

int t2 = max_scattered_sum_v2(v,n - 1);

r[n] = (t1 > t2) ? t1 : t2;

}

}

return r[n];

}

int max_scattered_sum_v3(int *v,int n)

{ // always O(n) time and O(1) space

if(n == 1)

return v[0];

int t1 = v[0];

int t2 = (v[0] > v[1]) ? v[0] : v[1];

for(int i = 2;i < n;i++)

{

int t3 = (t1 + v[i] > t2) ? t1 + v[i] : t2;

t1 = t2;

t2 = t3;

}

return t2;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 12 (224)

DP examples (part 3a, best partition problem)

Given an array of n > 0 positive integers a[0], a[1], . . . , a[n − 1], the best partition problem asks for the best

way to partition these integers into m > 1 consecutive ranges covering the entire array so that the maximum sum

of the array elements over each range is minimized. Mathematically, it asks for a set of indices i0, i1, . . . , im, with

i0 = 0, ik 6 ik+1 for k = 0, 1, . . . ,m− 1 and im = n, such that

max
06k<m

∑
ik6i<ik+1

a[i]

is minimized. By convention the sum is zero when the summation range is empty. For example, for n = 8 and

m = 3 one possible partition of the array can be

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

i0 = 0 i1 = 2 i2 = 5 i3 = 8

part 1︷ ︸︸ ︷ part 2︷ ︸︸ ︷ part 3︷ ︸︸ ︷

LetM [j, i] be the minimum of the maximum sums of the array elements a[0], . . . a[i−1] when they are subdivided

into j ranges. We are interested in the value of M [m,n] and in one partition that achieves it. The boundary cases

gives us

M [1, i] =
∑

06k<i

a[k], 0 6 i 6 n, and M [j, 0] = 0, 2 6 j 6 m,

and adding one more partition gives us (note that
∑

c6k<i a[k] = M [1, i]−M [1, c])

M [j, i] = min
06c6i

max
(
M [j − 1, c],M [1, i]−M [1, c]

)
, 1 6 i 6 n, 2 6 j 6 m.

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 13 (225)

DP examples (part 3b, code for the best partition problem)

The recursive formula for M [j, i] gives rise to an order O(mn2) algorithm to solve the best partition problem, as

shown in the following code:
int best_partition(int *a,int n,int m,int show)

{

int M[m + 1][n + 1]; // M[j][i] stores the best cost for the sub-problem with n=i and k=j

int D[m + 1][n + 1]; // D[j][i] records the best partition point to get to M[j][i]

int I[m + 1]; // partition indices

int i,j,c,best_c,cost,best_cost;

assert(n >= 1 && m >= 1);

//

// boundary cases

//

M[1][0] = 0;

D[1][0] = 0;

for(i = 1;i <= n;i++)

{

M[1][i] = M[1][i - 1] + a[i - 1]; // array elements in one partition

D[1][i] = 0;

}

for(j = 2;j <= m;j++)

{

M[j][0] = 0; // zero array elements

D[j][0] = 0;

}

— the code continues on the next slide —

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 14 (226)

— continuation of the code of the previous slide —
//

// apply dynamic programming to solve all sub-problems

//

for(j = 2;j <= m;j++)

for(i = 1;i <= n;i++)

{

best_c = 0;

best_cost = M[1][i] - M[1][0];

for(c = 1;c <= i;c++)

{

cost = (M[j-1][c] > M[1][i] - M[1][c]) ? M[j-1][c] : M[1][i] - M[1][c];

if(cost < best_cost)

{

best_cost = cost;

best_c = c;

}

}

M[j][i] = best_cost;

D[j][i] = best_c;

}

//

// construct best partition

//

I[m] = n;

for(i = n,j = m;j > 0;j--)

i = I[j - 1] = D[j][i]; // partition separator

assert(I[0] == 0);

— the code continues on the next slide —

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 15 (227)

— continuation of the code of the previous slide —
//

// show solution

//

if(show > 1)

for(j = 1;j <= m;j++)

for(i = 0;i <= n;i++)

printf("%2d[%2d]%s",M[j][i],D[j][i],(i == n) ? "\n" : " ");

if(show > 0)

{

printf("<%d> ",M[m][n]);

for(i = j = 0;i <= n;i++)

{

if(i == I[j])

{

printf("|%s",(i == n) ? "\n" : " ");

j++;

}

if(i < n)

printf("%d ",a[i]);

}

}

//

// done (we should also return the best partition, but in C that is cumbersome)

//

return M[m][n];

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 16 (228)

DP examples (part 3c, best partition example)

Consider the problem of subdividing the array

8 4 6 1 2 7 2 1 1 1 7 9

into 4 parts so that the largest sum of the elements of each part is as small as possible. In this case the contents of

the M[j][i] array of the function presented in the previous slides is

j\i 0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 8 12 18 19 21 28 30 31 32 33 40 49

2 0 8 8 10 11 12 16 18 18 18 18 21 28

3 0 8 8 8 8 9 10 11 12 12 12 16 18

4 0 8 8 8 8 8 9 9 10 10 10 11 16

and the contents of the D[j][i] array, useful to retrace the choices make by the algorithm and so find the partition

boundaries, is

j\i 0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 1 1 1 2 2 2 3 3 3 4 5

3 0 0 1 2 2 2 3 4 4 5 5 6 8

4 0 0 1 2 2 3 4 5 5 6 6 7 10

From this information it is possible to extract (in bold in the D[j][i] array) the best partition

8 4 6 1 2 7 2 1 1 1 7 9

It has a maximum sum of 16 (in bold in the M[j][i] array).

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 17 (229)

DP examples (part 4a, smallest edit distance)

Given the strings a[0], a[1], . . . , a[na − 1] and b[0], b[1], . . . , b[nb − 1], find the best sequence of insertions,

deletions, and character changes, that transforms the first string into the second. The cost of an insertion or a deletion

is I and the cost on a character change is X. (As insertion in a[] can be considered a deletion in b[], so the cost of

an insertion should be the same as that of a deletion.)

Let D[i, j] be the best (smallest) distance between the sub-strings a[0], . . . a[i − 1] and b[0], . . . , b[j − 1].

We are interested in the value of D[na, na], and in how one gets there in an optimal way starting from D[0, 0]

(two empty strings). Clearly, we have D[i, 0] = iI and D[0, j] = jI, i.e., D[i, j] = max(i, j)I when

min(i, j) = 0. We also have

D[i, j] =

D[i− 1, j − 1], if a[i-1]=b[j-1],

min
(
D[i− 1, j] + I,D[i, j − 1] + I,D[i− 1, j − 1] +X

)
, otherwise.

This formula gives rise to the following function to partially solve the problem (just compute D[na, nb]):
int distance_v1(char *a,char *b,int i,int j,int I,int X)

{

if(i == 0 || j == 0)

return ((i > j) ? i : j) * I;

int d1 = distance_v1(a,b,i - 1,j,I,X) + I; // one more in a[]

int d2 = distance_v1(a,b,i,j - 1,I,X) + I; // one more in b[]

int d3 = distance_v1(a,b,i - 1,j - 1,I,X) + ((a[i -1] == b[j - 1]) ? 0 : X); // one more in a[] and in b[]

if(d1 < d2 && d1 < d3)

return d1;

return (d2 < d3) ? d2 : d3;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 18 (230)

DP examples (part 4b, smallest edit distance using dynamic programming)

The code of the previous slide suffers from two problems: the distance function may be called more than once with

the same arguments (inefficient!), and, because the C language does not allow more than one return argument (if we

need that, we need to return a structure), it is not trivial to retrieve the best sequence of insertions/deletions and of

character exchanges. All this is solved if the values returned by the function are cached. The resultant algorithm is a

dynamic programming algorithm. It uses O(nanb) time and space. It the best sequence of insertions/deletions and

exchanges is not needed the space requirements can be lowered to O
(
min(na, nb)

)
.

int distance_v2(char *a,char *b,int na,int nb,int I,int X)

{

int i,j,D[na + 1][nb + 1];

for(i = 0;i <= na;i++) D[i][0] = i * I;

for(j = 0;j <= nb;j++) D[0][j] = j * I;

for(i = 1;i <= na;i++)

for(j = 1;j <= nb;j++)

{

int d1 = ((D[i - 1][j] < D[i][j - 1]) ? D[i - 1][j] : D[i][j - 1]) + I;

int d2 = D[i - 1][j - 1] + ((a[i - 1] == b[j - 1]) ? 0 : X);

D[i][j] = (d1 < d2) ? d1 : d2;

}

return D[na][nb];

}

If the best sequence of insertions/deletions and exchanges were needed, one would only need to start at D[na, nb]

and attempt to reach D[0, 0] in the smallest number of moves to an adjacent position (either decreasing i by 1,

j by 1, or i and j by 1), as illustrated in the next slide. When called with a[] = "destruction" (na = 11) and

b[] = "construction" (nb = 12), distance_v1() is one million times slower than distance_v2()!

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 19 (231)

DP examples (part 4c, smallest edit distance example)

The following table presents the values of D[i, j] (D[i][j] in the C function) when a[] = "master" and

b[] = "small edit distance". One one the best ways to transform one string into the other is depicted in

bold.

b[j-1] ’s’ ’m’ ’a’ ’l’ ’l’ ’ ’ ’e’ ’d’ ’i’ ’t’ ’ ’ ’d’ ’i’ ’s’ ’t’ ’a’ ’n’ ’c’ ’e’

a[i-1] i\j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

’m’ 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

’a’ 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

’s’ 3 3 2 3 2 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16

’t’ 4 4 3 3 3 3 3 4 5 6 7 7 8 9 10 11 11 12 13 14 15

’e’ 5 5 4 4 4 4 4 4 4 5 6 7 8 9 10 11 12 12 13 14 14

’r’ 6 6 5 5 5 5 5 5 5 5 6 7 8 9 10 11 12 13 13 14 15

This path was constructed by selecting, at position (i, j), its neighbor with the smallest value. Only the neighbors

(i− 1, j − 1), to the left and up, (i− 1, j), to the left, and (i, j − 1), up, need to be considered. In the case

of a tie the choice of neighbor is arbitrary.

AED 2022/2023
Tomás Oliveira e Silva

Home P.08 JT.08I page 20 (232)

Algorithmic techniques (exercises)

— P.08 —

AED 2022/2023
Tomás Oliveira e Silva

Home JT.08I P.08 page 1 (233)

Finding all possibilities
— T.09 —

Summary:

• Exhaustive search

• Depth-first search

• Breadth-first search

• Traversing a binary tree in depth-first order and in

breadth-first order

• Backtracking

• Pruning

• An example: a chessboard problem

• Two extra examples (sudoku and klotski)

Recommended bibliography for this lecture:

• Introduction to Algorithms, Thomas H. Cormen, Charles
E. Leiserson, Ronald L. Rivest, and Clifford Stein, third edi-
tion, The MIT press, 2009.

• The Algorithm Design Manual, Steven S. Skiena, second
edition, Springer, 2008.

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 1 (234)

Exhaustive search

Many problems amenable to be solved by a computer require generating all possible configurations of a potential

solution and either

• finding one that actually solves the problem or

• finding, among all that solve the problem, the “best one.”

The potential solutions are usually constructed in an incremental way, piece by piece. When that happens it is possible

to depict the generation process as building a so-called search tree; adding a node to the tree corresponds to adding

another piece to the potential solution. For example, while attempting to solve a sudoku, adding a piece might be

placing a specific number in a specific empty square.

We will illustrate the two main strategies of generation of a search tree using the following binary search tree:

∅

0 1

00 01 10 11

000 001 010 011 100 101 110 111

(In this case we may think that the root of the tree corresponds to an empty initial configuration and that at each

level we decide to append either a 0 or a 1 to the configuration.)

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 2 (235)

Depth-first search

The way the search tree is constructed can make a big different in the execution time of the exhaustive search. For

example, placing a piece early in a position that invalidates any possibility of a solution is obviously a bad choice.

Deciding how to build the search tree is usually one of the most critical tasks one faces when performing an exhaustive

search.

In a depth-first search one tries to go as deep as possible as soon as possible. It is the most common strategy

used in an exhaustive search, because it can be done quite easily (using recursion, for example), and does not require

much memory to manage the search.

For the search tree we are using as example, in a depth-first search the nodes of the tree are visited in the following

order (small numbers in gray on the upper left of each node):

1 ∅

2 0 9 1

3 00 6 01 10 10 13 11

4 000 5 001 7 010 8 011 11 100 12 101 14 110 15 111

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 3 (236)

Breadth-first search

In a breadth-first search one attempts to avoid going deeper for as long as possible, i.e., one explores the nodes

of the search tree one level at a time. It is usually the strategy to use when one wants to first the shallowest solution

and when the tree can be very deep. (The problem may ask, for example, for the smallest number of moves to win

a game.) Its implementation is more difficult than that of a depth-first search, and it usually requires a significant

amount of memory to store the search tree nodes that have not yet been expanded.

For the search tree we are using as example, in a breadth-first search the nodes of the tree are visited in the following

order (small numbers in gray on the upper left of each node):

1 ∅

2 0 3 1

4 00 5 01 6 10 7 11

8 000 9 001 10 010 11 011 12 100 13 101 14 110 15 111

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 4 (237)

Traversing a binary tree in depth-first order and in breadth-first order

The following two non-recursive functions traverse a binary tree in depth-first and in breadth-first order. Note that

they only differ in the data structure used to keep track of the nodes that have not yet been expanded! In both cases

each node of the binary tree will be implemented (in C++) as follows:
typedef struct tree_node

{

struct tree_node *left; // pointer to the left branch (a sub-tree)

struct tree_node *right; // pointer to the right branch (a sub-tree)

int data; // the data item (we use an int here, but it can be anything)

}

tree_node;

Here go the functions:

void depth_first(tree_node *root)

{

stack<tree_node *> s;

tree_node *n;

s.push(root);

while(s.isEmpty() == 0)

if((n = s.pop()) != nullptr)

{

visit(n);

s.push(n->left);

s.push(n->right); // right is done first!

}

}

void breadth_first(tree_node *root)

{

queue<tree_node *> s;

tree_node *n;

s.enqueue(root);

while(s.isEmpty() == 0)

if((n = s.dequeue()) != nullptr)

{

visit(n);

s.enqueue(n->left); // left is done first!

s.enqueue(n->right);

}

}

Observe their simplicity and elegance! The first one can also be easily implemented in a recursive way but that cannot

be done easily for the second. The maximum queue size can be quite large!

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 5 (238)

Backtracking

When performing a depth-first search it is quite common to not be able to progress into a deeper search tree level. In

that case one has to go retrace our steps and try the next possibility at a lower level (this is called backtracking).

If the depth-first search is done via recursion, backtracking is done by returning from the function.

A backtracking depth-first search algorithm usually has the following structure:

1. [Initialize.] Initialize all relevant data structures and set the search level to 0. Go to Step 2.

2. [Try the current configuration.] If the current configuration is not acceptable, go to Step 3. Otherwise, if we

have a solution to the problem, record it (and terminate the algorithm if the goal was to find one solution) and

go to Step 3. Otherwise, update the relevant data structures to reflect the new data in the current configuration,

increase the search level by 1, and go to Step 3.

3. [Advance.] Advance to the next configuration. If one exists, go back to Step 2. Otherwise, go to Step 4.

4. [Backtrack.] If we are at search level 0, terminate the algorithm. Otherwise, decrease the search level by 1 and

undo the changes made to the relevant data structures in step 2. After that, go back to Step 3.

Depth-first search trees usually have a huge number of nodes, so any gain in speed in its implementation is welcome.

Thus, although it is possible to code a depth-first search algorithm using a recursive function, for efficiency reasons

it is usually preferable to do it all in the same function, using a custom made stack to store the search history. The

author of this document goes one step further: he usually uses goto statements to jump between the different stages

of the search, because it makes the code easier to understand! (The use of the more “respectable” control flow

statements in algorithms of this nature usually complicates matters if one wants an efficient implementation.)

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 6 (239)

Pruning

In some problems it is possible to check if continuing to search for a solution by expanding the current search tree

node (i.e., going deeper by checking the node’s children) can lead to a solution, or to a better solution, of the problem.

If it can be determined in advance that a (better) solution is not possible, one can immediately advance to the next

configuration at the same search depth. This is called pruning the search tree.

If the pruning test is expensive, it may be advantageous to apply it only at some selected search tree depths, say,

every tenth level.

The most successful depth-first search algorithms use pruning to reduce, sometimes dramatically, the number of search

tree nodes that are visited by the program. In some difficult problems (i.e., very time consuming problems), one may

even perform a non-exhaustive search by pruning the search tree with an heuristic (a test that keeps only promising

search tree branches).

Pruning is usually performed in depth-first searches. It can also be done in a breadth-first search.

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 7 (240)

An example: a chessboard problem (part 1, problem statement and some code)

Consider the following “toy problem” (actually, not a toy problem, check problem C18 in “Unsolved Problems in

Number Theory,” Richard K. Guy, third edition, Springer, 2004): find the maximum number of not attacked squares

when Q queens are placed on a W × H chessboard (squares with queens are considered to be attacked). This

problem will be solved using depth-first search, backtracking and pruning.

We begin by declaring the data structures used to solve the problem. In general, this step requires considerable

thought. In our case, a few arrays are enough (for legibility, the code uses max_n_queen instead of Q, max_x instead

of W , and max_y instead of H):
#define true_max_x 10 // max_x cannot be larger than this

#define true_max_y 10 // max_y cannot be larger than this

#define true_max_n_queens 10 // max_n_queens cannot be larger than this

int board[true_max_x][true_max_y];

int queen_x[true_max_n_queens],queen_y[true_max_n_queens];

int max_x,max_y,max_n_queens,n_unattacked;

int best_queen_x[true_max_n_queens],best_queen_y[true_max_n_queens],best_n_unattacked;

void init_board(void)

{

for(int x = 0;x < max_x;x++) for(int y = 0;y < max_y;y++) board[x][y] = 0; // unattacked

n_unattacked = max_x * max_y;

best_n_unattacked = 0;

}

The array board[][] will record the number of times each square is attacked by the queens, and the arrays

queen_x[] and queen_y[] will record the coordinates of the queens. The variable n_unattacked will keep

track of the number of not attacked squares. The best_. . . variables will keep track of the best solution (i.e., the

one with the largest number of not attacked squares).

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 8 (241)

An example: a chessboard problem (part 2, support code)

Next, we need a way to register the effects of placing a queen in a square and a way of undoing those effects. The

following two simple functions do those jobs:
void mark(int x,int y)

{

define apply_mark(xx,yy) do if(board[xx][yy]++ == 0) n_unattacked--; while(0)

for(int i = 0 ; i < max_x ; i++) apply_mark(i,y);

for(int i = 0 ; i < max_y ; i++) apply_mark(x,i);

for(int i = 1 ; x + i < max_x && y + i < max_y ; i++) apply_mark(x + i,y + i);

for(int i = 1 ; x - i >= 0 && y - i >= 0 ; i++) apply_mark(x - i,y - i);

for(int i = 1 ; x + i < max_x && y - i >= 0 ; i++) apply_mark(x + i,y - i);

for(int i = 1 ; x - i >= 0 && y + i < max_y ; i++) apply_mark(x - i,y + i);

undef apply_mark

}

void unmark(int x,int y)

{

define remove_mark(xx,yy) do if(--board[xx][yy] == 0) n_unattacked++; while(0)

for(int i = 0 ; i < max_x ; i++) remove_mark(i,y);

for(int i = 0 ; i < max_y ; i++) remove_mark(x,i);

for(int i = 1 ; x + i < max_x && y + i < max_y ; i++) remove_mark(x + i,y + i);

for(int i = 1 ; x - i >= 0 && y - i >= 0 ; i++) remove_mark(x - i,y - i);

for(int i = 1 ; x + i < max_x && y - i >= 0 ; i++) remove_mark(x + i,y - i);

for(int i = 1 ; x - i >= 0 && y + i < max_y ; i++) remove_mark(x - i,y + i);

undef remove_mark

}

The first two for cycles deal with the squares attacked by a queen in the horizontal and vertical directions, the

next two deal (somewhat inefficiently) with squares attacked in the 45 degree direction, and the last two deal (again,

somewhat inefficiently) with squares attacked in the -45 degree direction.

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 9 (242)

An example: a chessboard problem (part 3, more support code)

Next, we need a way to record and present best solutions:
void update_best_solution(void)

{

if(n_unattacked > best_n_unattacked)

{

best_n_unattacked = n_unattacked;

for(int i = 0;i < max_n_queens;i++)

{

best_queen_x[i] = queen_x[i];

best_queen_y[i] = queen_y[i];

}

}

}

#include <stdio.h>

void show_best_solution(void)

{

if(best_n_unattacked == 0)

return;

printf("%2d %2d %2d %2d ",max_x,max_y,max_n_queens,best_n_unattacked);

for(int i = 0;i < max_n_queens;i++)

printf(" (%d,%d)",best_queen_x[i],best_queen_y[i]);

printf("\n");

fflush(stdout);

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 10 (243)

An example: a chessboard problem (part 4, the depth-first code)

Now everything is in place to present the depth-first search code in all its glory:
void solve(void)

{

int x,y,n_queens;

init_board();

x = y = n_queens = 0;

place_queen: mark(queen_x[n_queens] = x,queen_y[n_queens] = y);

if(++n_queens == max_n_queens)

{

update_best_solution();

goto backtrack;

}

/* prune: */ if(n_unattacked <= best_n_unattacked)

goto backtrack;

next_position: if(++y == max_y)

{

y = 0;

if(++x == max_x)

goto backtrack;

}

goto place_queen;

backtrack: if(--n_queens < 0)

goto done; // this goto can be easily avoided, the others are not that easy...

unmark(x = queen_x[n_queens],y = queen_y[n_queens]);

goto next_position;

done: show_best_solution();

}

In this particular case the goto statements are used in a disciplined way and actually make the program cleaner (at

least to the author). If you are not convinced, try doing it using more traditional control flow statements and without

recursion (remember, recursion is in this case inefficient); goto statements are not always harmful!

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 11 (244)

An example: a chessboard problem (part 4, the main code)

It is now time to present the main program. It just requests solutions for all board sizes and number of queens up to

the hardcoded limits defined at the beginning of the code:
int main(void)

{

printf(" X Y Q P coords\n");

printf("-- -- -- -- ---\n");

for(max_x = 1;max_x <= true_max_x;max_x++)

for(max_y = max_x;max_y <= true_max_y;max_y++)

for(max_n_queens = 1;max_n_queens <= true_max_n_queens;max_n_queens++)

solve();

printf("-- -- -- -- ---\n");

return 0;

}

[Research problem: What is the exact maximum number of not attacked squares when N queens are placed on

an N ×N chessboard for N > 14?]

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 12 (245)

Two extra examples (sudoku and klotski)

Summary:

• sudoku solver (depth-first search example)

• klotski solver (breadth-first search example)

Remarks: The explanation of the two examples of the following
slides follow a bottom-up approach: they start by the founda-
tions (data types and low-level functions), and then they present
functions that depend on the data types and functions that were
previously explained, finishing with the main() function. The au-
thor is these slides almost always writes his programs in this way.
However, his approach to the planning phase of the program is
top-down. He usually spends a significant amount of time think-
ing about the data structures that will be used, and about how
to subdivide the program into manageable parts. He only starts
writing code when he has convinced himself that his solution will
work and is reasonably efficient. While coding, when he has fin-
ished a module (a group of functions that address a particular
part of the problem), we usually writes one of more test functions
to make sure that that part of the program works as planed.
The complete code of these two examples can be found in the
archive P09.tgz.

Highly recommended bibliography:

• Dancing links, Donald E. Knuth, 2000. [Although the
dancing links method is not explained in these slides, reading
this paper is definitely worth the time.]

Recommended bibliography:

• Programming Pearls, Jon Bentley, second edition, Addison
Wesley, 2000.

• Introduction to Algorithms, Thomas H. Cormen, Charles
E. Leiserson, Ronald L. Rivest, and Clifford Stein, third edi-
tion, The MIT press, 2009.

• The Algorithm Design Manual, Steven S. Skiena, second
edition, Springer, 2008.

• Algorithm Design, Jon Kleinberg and Éva Tardos, Addison
Wesley, 2006.

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 13 (246)

http://arxiv.org/pdf/cs/0011047v1.pdf

Sudoku solver (part 1, problem formulation)

In the standard sudoku puzzle a 9×9 array of cells in partitioned (independently)

into 9 rows, into 9 columns, and into 9 smaller 3×3 arrays of cells (see figure on

the right hand side). Given a set of clues (numbers already placed in the array),

the objective of the sudoku puzzle is to fill the empty cells with the numbers

1, 2, . . . , 9 in such a way that

• each row contains only one occurrence of each number,

• each column also contains only one occurrence of each number, and

• each 3x3 smaller square also contains only one occurrence of each number.

Usually, the clues are selected so that the puzzle has only one solution (we can use that to our advantage!). In

this lecture we are going to study in detail a program capable of solving sudoku puzzles. Is has the following

characteristics:

• it can deduce cell numbers using some simple methods,

• when no deduction is possible, it can guess cell numbers (and backtrack if the guess was wrong),

• it reports the number of solutions found (0, 1, or more than 1), and

• it can be configured to use only some deduction methods, so it can be the starting point of another program

capable of generating sudoku puzzles. (One starts with a complete array and then one removes numbers at

random and one keeps checking if the puzzle can still be solved and if it still has only one solution.)

The program preforms a depth-first search because if a second guess is necessary it does it without trying first the

other possible choices for the first guess.

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 14 (247)

Sudoku solver (part 2a, deduction methods)

The program will use the following deduction methods:

• Method number 1: (elementary) If only one number can be placed in a cell, place it. (Example on the left

below.)

• Method number 2: (elementary) If in a region (row, column, or small 3× 3 square) a number can only be

placed in one cell, place it in that cell. (Example on the middle below.)

• Method number 3: (intermediate/advanced) If in a region there exist n cells in which only the same n

numbers can be placed, then these numbers cannot be placed in the other cells of that region. Furthermore, if

these cells also all belong to another region, then these numbers cannot be placed in the other cells of that other

region. (Example on the right below.)

These methods should be reapplied until they do not produce any more changes in the puzzle state. The following

examples illustrate how these deduction methods work. On the first two, the number inside the gray square is forced.

On the last, the gray squares cannot contain the numbers in the red squares (the red squares must contain the

numbers 1, 3, and 7, the other two cells of the central small square must contain the numbers 2 and 8).

3

1 4

7 2 8 9

5

6

1

1

1

7 2 9

1

8

6 7

1 4 5

9 3

2

Stop and think! How can these tasks be accomplished in an efficient way?

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 15 (248)

Sudoku solver (part 2b, data structures for the deduction methods)

Deduction method number 1 is implemented by keeping for each cell a list of the numbers that can still be placed

there. Given that there are only 9 possible numbers for each cell, the list can be stored in a single integer (in the

code this integer is called a mask), one bit per possible number. If bit number i of the mask is set (equal to 1) then

the number i + 1 can be placed in the cell without violating the sudoku rules. To apply this deduction method it

will be necessary to find out if a mask has only one bit set. This is accomplished by storing in the array n_bits[]

the number of bits equal to 1 for all possible masks. If the mask has only one bit set, it will be necessary to find out

that bit number. This is accomplished by storing in the array lsb_number[] the number of the least significant bit

that is not zero (if the mask is all zeros, -1 is stored in that array).

Deduction method number 2 is implemented by providing a way to expand a mask, inserting 3 zero bits between the

bits of the original mask (and three more on the left). For example, the 9-bit mask 100110110 when expanded

becomes the 36-bit mask 000100000000000100010000000100010000. By adding up the expanded masks one is

counting in parallel the number of times each digit appears in the masks. (Given that a digit can appear in all 9

masks, at least 4 bits are necessary to do this for each number.) In the program, the array expand_mask[] stores

the expanded masks.

Deduction method number 3 uses the arrays described above and some bit manipulation tricks to do its job. In

particular, code such as the following is used to identify and extract one at a time the bits set to one of a mask:

for(mask_copy = mask;((bit_number = lsb_number[mask_copy]) >= 0;mask_copy ^= 1 << bit_number)

{

// do some stuff here (this is done n_bits[mask] times)

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 16 (249)

Sudoku solver (part 3, bit stuff)

The following code initializes the arrays n_bits[], lsb_number[], and expand_mask[] described in the previous

slide. Note that there are 29 = 512 possible masks and that the data type of the expand_mask[] array must be

able to hold at least 36 bits.
static int n_bits[512]; // number of bits set to 1

static int lsb_number[512]; // number of the least significant bit that is set to 1

static long long expand_mask[512]; // transform each mask bit into four bits (insert three zeros)

static void init_mask_data(void)

{

int m,i,j;

for(m = 0;m < 512;m++) // for each mask ,,,

{

n_bits[m] = 0; // compute its number of bits set to one

lsb_number[m] = -1; // compute also the bit number of its least significant bit set to one

expand_mask[m] = 0ll; // and compute its expanded mask ...

i = -1;

for(j = m;j != 0;j >>= 1)

{

i++;

if((j & 1) != 0) // is the i-th bit of m one?

{ // yes!

n_bits[m]++; // one more bit

if(lsb_number[m] < 0) // is this the first bit set to one?

lsb_number[m] = i; // yes! set the least significant bit number

expand_mask[m] |= 1ll << (4 * i); // update the expanded mask

}

}

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 17 (250)

Sudoku solver (part 4a, puzzle regions)

The 9 × 9 array of cells is partioned into rows, columns, and smaller 3 × 3 arrays of cells (called regions in the

code). It will be necessary to known which cells belong to which regions and vice versa. That information is stored

in the arrays cell_regions[][] and region_cells[][]. To apply deduction method number 3 it will also be

necessary to discover if a group of cells belongs to more than one region. Sufficient information to do this is stored

in the array region_intersections[][].

The following code initializes the arrays mentioned above. Note that there are 81 cells and 27 regions, that each

cell belongs to 3 regions, that each region has 9 cells, and that there are 54 relevant region intersections.
#include <assert.h>

static int cell_regions[81][3]; // the numbers of the regions each cell belongs to

static int region_cells[27][9]; // the cells that are part of each region

static int region_intersections[54][5]; // intersection data

void init_regions(void)

{

int c,r,n,x,y,r1,r2,i,j,C[9],ni;

for(c = 0;c < 81;c++) // for each cell ...

{

x = c % 9; // cell x coordinate

y = c / 9; // cell y coordinate

cell_regions[c][0] = x; // vertical region formed by the same x value

cell_regions[c][1] = 9 + y; // horizontal region formed by the same y value

x /= 3; // square region x coordinate

y /= 3; // square region y coordinate

cell_regions[c][2] = 18 + 3 * y + x; // square region

}

— the code continues on the next slide —

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 18 (251)

— continuation of the code of the previous slide —
for(r = 0;r < 27;r++) // for each region ...

{

for(n = c = 0;c < 81;c++) // find the cells that belong to this region ...

if(cell_regions[c][0] == r || cell_regions[c][1] == r || cell_regions[c][2] == r)

region_cells[r][n++] = c;

assert(n == 9); // must be 9 for each region

}

ni = 0; // count the number of valid region intersections

for(r1 = 18;r1 < 27;r1++) // for all square regions ...

for(r2 = 0;r2 < 18;r2++) // for all non-square regions ...

{

n = i = j = 0; // compute intersection of the two regions

while(i < 9 && j < 9) // find and count the number of common elements of two sorted arrays

if(region_cells[r1][i] == region_cells[r2][j])

{

C[n++] = region_cells[r1][i++];

j++;

}

else if(region_cells[r1][i] < region_cells[r2][j])

i++;

else

j++;

if(n == 3) // if the intersection has 3 cells ...

{

region_intersections[ni][0] = C[0]; // record first cell number

region_intersections[ni][1] = C[1]; // record second cell number

region_intersections[ni][2] = C[2]; // record third cell number

region_intersections[ni][3] = r1; // record first region number

region_intersections[ni][4] = r2; // record second region number

ni++;

}

}

assert(ni == 54); // must be 54

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 19 (252)

Sudoku solver (part 4b, find a puzzle region)

To apply deduction method number 3 it is necessary to find if a given group of cells belong to two regions, and if so

it is necessary to find the number of one of those regions given the number of the other. The following code does

precisely that.
static int find_region(int r,int nc,int *c)

{

int i,j,k,n;

if(nc < 2 || nc > 3) // only 2 or 3 cells are possible

return -1; // no valid region

for(i = 0;i < 54;i++) // for each possible intersection

{

n = j = k = 0; // count the number of common elements of two sorted arrays

while(j < 3 && k < nc)

if(region_intersections[i][j] == c[k])

{

n++;

j++;

k++;

}

else if(region_intersections[i][j] < c[k])

j++;

else

k++;

assert(n != nc || region_intersections[i][3] == r || region_intersections[i][4] == r);

if(n == nc) // found it! return the number of the other region

return (region_intersections[i][3] == r) ? region_intersections[i][4] : region_intersections[i][3];

}

return -1; // no valid region

}

[Homework: Study how the number of common elements of two sorted arrays is counted.]

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 20 (253)

Sudoku solver (part 5a, puzzle state initialization)

The state of the sudoku puzzle is essentially the state of each one of its cells. For each cell it was decided to store the

number it holds (digit in the code below), to store a mask (mask) of the possible numbers it can hold, to record

the method number (method) used to place the number, and to use a flag (frozen) to simplify the implementation

of the deduction method number 3. The following function initializes the puzzle state.
typedef struct

{

int n_known_digits; // number of digits already known

struct

{

int digit; // number placed in this cell (-1 means none, 0..8 means 1..9)

int mask; // bit-mask of the digit values that can be placed in this cell

int method; // method number used to place a digit in this cell (-1 means none)

int frozen; // if non-zero, do not make changes to the mask

}

cells[81]; // the state of each of the 9x9 cells

}

state;

void init_state(state *s)

{

int c;

s->n_known_digits = 0; // no known digits

for(c = 0;c < 81;c++) // for each cell ...

{

s->cells[c].digit = -1; // no digit

s->cells[c].mask = 0x1FF; // all digits are possible

s->cells[c].method = -1; // no placement method

s->cells[c].frozen = 0; // not frozen

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 21 (254)

Sudoku solver (part 5b, display puzzle state)

The following function outputs the current puzzle state.
#include <stdio.h>

static void show_state(state *s)

{

int c,x,y,t0,t1,t2,t4,tx;

t0 = t1 = t2 = t4 = tx = 0;

for(c = 0;c < 81;c++)

{

x = c % 9;

y = c / 9;

if(x == 0)

printf(" ");

if(s->cells[c].digit < 0)

printf("[?]");

else

printf("[%d]",s->cells[c].digit + 1);

switch(s->cells[c].method)

{

case 0: printf("F"); t0++; break;

case 1: printf("1"); t1++; break;

case 2: printf("2"); t2++; break;

case 4: printf("g"); t4++; break;

default: printf("?"); tx++; break;

}

if(x < 8)

printf((x % 3 == 2) ? " " : " ");

else

printf((y % 3 == 2) ? "\n\n" : "\n");

}

printf(" --- F:%d 1:%d 2:%d g:%d ?:%d\n",t0,t1,t2,t4,tx);

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 22 (255)

Sudoku solver (part 6, place a number)

The following function places a number in a given cell. It returns 0 if no solution is possible (that happens when a

mask becomes 0), and returns 1 otherwise.
static int place_digit(state *s,int cell,int digit,int method)

{

int ir,r,ic,c,m;

assert(0 <= cell && cell < 81 && digit >= 0 && digit <= 8);

assert(s->cells[cell].digit == -1 && (s->cells[cell].mask & (1 << digit)) != 0);

s->n_known_digits++;

s->cells[cell].digit = digit;

s->cells[cell].mask = 0;

s->cells[cell].method = method;

s->cells[cell].frozen = 1;

m = 1 << digit; // digit mask

for(ir = 0;ir < 3;ir++) // for each of the three cell regions ...

{

r = cell_regions[cell][ir];

for(ic = 0;ic < 9;ic++) // for each of the 9 cells belonging to the region ...

{

c = region_cells[r][ic];

if((s->cells[c].mask & m) != 0) // if the digit can be place here ...

if((s->cells[c].mask &= ~m) == 0) // make that impossible, and say no solution is

return 0; // possible if the new mask is 0

}

}

return 1; // say that a solution is possible

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 23 (256)

Sudoku solver (part 7, parse a sudoku puzzle)

The following function extract the clues of a sudoku puzzle from an initialization string and places them on an initially

empty puzzle state. It returns 0 if the initialization string is not valid, or if no solution is possible, and returns 1

otherwise.
static int init_sudoku(state *s,char *data)

{

int c;

init_state(s);

for(c = 0;c < 81 && *data != '\0';data++)

if(*data == ' ' || *data == '.' || *data == '?')

c++;

else if(*data >= '1' && *data <= '9' && place_digit(s,c++,(int)(*data) - '1',0) == 0)

return 0;

return (*data == '\0' && c == 81) ? 1 : 0;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 24 (257)

Sudoku solver (part 8, deduction method number 1)

Everything is now in place to start presenting code to actually solve the sudoku puzzle. The functions that implement

the number deduction methods return 0 if they did change the state of the puzzle and if because of that a solution is

no longer possible, return 1 if they did not change the state of the puzzle (so a solution is still possible), and return 2

if they did change the state of the puzzle and if a solution is still possible.

The following code deals with cells that can have only one possible value.
static int do_method_1(state *s)

{

int rv,c,d;

rv = 1;

for(c = 0;c < 81;c++) // for each cell ...

if(n_bits[s->cells[c].mask] == 1) // only one possibe digit?

{ // yes!

d = lsb_number[s->cells[c].mask]; // find digit

if(place_digit(s,c,d,1) == 0) // place it

return 0; // say no solution is possible if place_digit() says so

rv = 2; // say at least one digit was placed

}

return rv;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 25 (258)

Sudoku solver (part 9, deduction method number 2)

The following code deals will regions in which a digit can only be placed in one cell.
static int do_method_2(state *s)

{

int rv,r,ic,c,d;

long long sum;

rv = 1;

for(r = 0;r < 27;r++) // for each region ...

{

sum = 0ll;

for(ic = 0;ic < 9;ic++) // for each cell ...

{

c = region_cells[r][ic];

sum += expand_mask[s->cells[c].mask];

}

for(d = 0;d < 9;d++) // for each digit ...

if(((sum >> (4 * d)) & 15ll) == 1ull) // if the digit appears in only one mask ...

for(ic = 0;ic < 9;ic++) // find cell! For each cell ...

{

c = region_cells[r][ic];

if(((s->cells[c].mask >> d) & 1) != 0) // is this cell the one?

{ // yes!

if(place_digit(s,c,d,2) == 0) // place the digit in the cell

return 0; // say no solution is possible if place_digit() says so

rv = 2; // say at least one digit was placed

}

}

}

return rv;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 26 (259)

Sudoku solver (part 10a, deduction method number 3, trim masks)

The following function adjusts the masks of all unfrozen cells in a region so that they no longer can hold a given set

of numbers. It returns 0 is a solution becomes impossible, returns 1 if no change was made to the puzzle state, and

returns 2 otherwise.
static int trim_masks(state *s,int r,int mask)

{ // 0 -> no solution, 1 -> no change, 2 -> change

int rv,ic,c,new_mask;

rv = 1;

if(r >= 0 && r <= 26) // if the region number is valid ...

for(ic = 0;ic < 9;ic++) // for each cell ...

{

c = region_cells[r][ic];

if(s->cells[c].frozen == 0) // if the mask can be modified ...

{

new_mask = s->cells[c].mask & ~mask; // trim mask

if(new_mask == 0)

return 0; // say no solution is possible

if(new_mask != s->cells[c].mask) // if the new mask is different from the old one ...

{

s->cells[c].mask = new_mask; // update mask

rv = 2; // and say that at least one mask changed

}

}

}

return rv;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 27 (260)

Sudoku solver (part 10c, deduction method number 3)

The following function implements the deduction method number 3. For each region it first records all cells without

numbers (that is the code presented in this page), and then for each possible subset of nc cells it checks if their

masks force nc numbers to be placed in them; if so these numbers are removed from the masks of the other

cells of the region and of a possible “intersecting” region (that is the code presented on the next page). For

example, the last two of the following five masks m1 = 000000101, m2 = 001000100, m3 = 001000001,

m4 = 010000111, and m5 = 011000011 can be trimmed to m4 = m5 = 010000010 because the mask

m1 orm2 orm3 = 001000101 has 3 bits set to 1 and so three numbers (1, 3, and 7) must be placed in the cells

corresponding to these masks. Here is its code:

static int do_method_3(state *s)

{

int rv,r,ic,c,nm,M[9],C[9],nc,CC[9],i,j,cm,b,rr;

rv = 1;

for(r = 0;r < 27;r++) // for each region ...

{

nm = 0; // count the number of cells and masks that are relevant

for(ic = 0;ic < 9;ic++) // for each cell ...

{

c = region_cells[r][ic];

if(s->cells[c].digit < 0) // if it does not yet have a digit ...

{

C[nm] = c; // record the cell

M[nm] = s->cells[c].mask; // record the mask

nm++;

}

}

— the code continues on the next slide —

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 28 (261)

— continuation of the code of the previous slide —
for(i = 3;i < (1 << nm);i++) // for each possible subset with at least 2 elements

if(n_bits[i] >= 2)

{

nc = 0; // count the cells of the subset and combine (logical or) their masks

for(cm = 0,j = i;(b = lsb_number[j]) >= 0;j ^= 1 << b)

{

CC[nc++] = C[b]; // record the cell

cm |= M[b]; // combine masks

}

assert(n_bits[i] == nc); // not needed, but we check this anyway

if(nc == n_bits[cm]) // if the number of cells is equal to the number of possible digits

{

for(j = 0;j < nc;j++)

s->cells[CC[j]].frozen = 1; // freeze the cells of the subset

switch(trim_masks(s,r,cm)) // trim all unfrozen cells of the region

{

case 0: return 0; // say no solution is possible if trim_masks() says so

case 2: rv = 2; // say that at least one mask changed if trim_masks() says so

}

rr = find_region(r,nc,CC); // find another region (if any) that has the frozen cell of the current one

if(rr >= 0) // if it exists ...

switch(trim_masks(s,rr,cm)) // trim all unfrozen cells of that region

{

case 0: return 0; // say no solution is possible if trim_masks() says so

case 2: rv = 2; // say that at least one mask changed if trim_masks() says so

}

for(j = 0;j < nc;j++)

s->cells[CC[j]].frozen = 0; // unfreeze the cells of the subset

}

}

}

return rv;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 29 (262)

Sudoku solver (part 11, solve sudoku)

It is now time to present the function that solves a sudoku puzzle. It returns -1 when a solution was not found,

returns 0 when the puzzle does not have a solution, returns 1 when it has only one solution, and returns 2 when it

has two or more solutions. It records one solution in the sol argument. While attempting to find a solution it does

not use methods with numbers larger than max_method (guessing a number is method number 4). Here is its code:
static int solve_sudoku(state *s,state *sol,int max_method)

{

int rv1,rv2,rv3,c,bc,nb,m,d,ns;

state ss;

rv1 = rv2 = rv3 = 2;

while(s->n_known_digits < 81 && (rv1 > 1 || rv2 > 1 || rv3 > 1)) // deduce digits

{

rv1 = rv2 = rv3 = 1;

if(max_method >= 1 && (rv1 = do_method_1(s)) == 0) return 0;

if(max_method >= 2 && (rv2 = do_method_2(s)) == 0) return 0;

if(max_method >= 3 && (rv3 = do_method_3(s)) == 0) return 0;

}

if(s->n_known_digits == 81) { *sol = *s; return 1; } // solved!

if(max_method < 4) return -1; // not solved!

for(nb = 10,bc = 0,c = 0;c < 81;c++) // find the "best" cell

if(s->cells[c].digit < 0 && n_bits[s->cells[c].mask] < nb)

nb = n_bits[s->cells[bc = c].mask];

for(ns = 0,m = s->cells[bc].mask;ns < 2 && m != 0;m ^= 1 << d) // try all digits

{

d = lsb_number[m]; // digit to try

ss = *s; // clone the state

if(place_digit(&ss,bc,d,4) != 0) // place digit

ns += solve_sudoku(&ss,sol,max_method); // recurse if the digit placement allows solutions

}

return (ns > 1) ? 2 : ns;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 30 (263)

Sudoku solver (part 12a, main function)

To exercise the sudoku solver the main function uses it to solve a few interesting puzzles:
int main(void)

{

static struct

{

char *data;

char *author;

}

puzzles[] =

{

{ "7.19..3.6.....6.71...1..29..3....6.99.4...8.76.8....3..19..5...57.4.....4.3..91.8","solo (trivial)" },

{ "..462.5.....75...6.....3...........5..3284.9.6....1.8...9.4..623............7.4..","solo (unreasonable)" },

{ "8..........36......7..9.2...5...7.......457.....1...3...1....68..85...1..9....4..","Arto Inkala" },

{ "6....894.9....61...7..4....2..61..........2...89..2.......6...5.......3.8....16..","David Filmer" },

{ "...8.1..........435............7.8........1...2..3....6......75..34........2..6..","McGuire, Tugemann, Civario" }

};

state s,sol;

int i,ns;

init_mask_data();

init_regions();

for(i = 0;i < (int)(sizeof(puzzles) / sizeof(puzzles[0]));i++)

if(init_sudoku(&s,puzzles[i].data) != 0)

{

ns = solve_sudoku(&s,&sol,9);

printf("Suduku by %s\n\n",puzzles[i].author);

if(ns > 0)

show_state(&sol);

printf(" --- number of solutions: %d%s\n\n",ns,(ns == 2) ? " or more" : "");

}

return 0;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 31 (264)

Sudoku solver (part 12b, main function output)

It is interesting to observe that one of the possible sudoku puzzles with the least number of clues (17) can be solved

by entirely elementary methods:

Suduku by McGuire, Tugemann, Civario

[2]1 [3]1 [7]1 [8]F [4]1 [1]F [5]1 [6]2 [9]2

[1]2 [8]2 [6]2 [7]1 [9]1 [5]2 [2]1 [4]F [3]F

[5]F [9]1 [4]1 [3]2 [2]1 [6]1 [7]1 [1]2 [8]2

[3]2 [1]1 [5]2 [6]2 [7]F [4]2 [8]F [9]2 [2]1

[4]2 [6]1 [9]2 [5]1 [8]2 [2]2 [1]F [3]2 [7]1

[7]1 [2]F [8]1 [1]1 [3]F [9]1 [4]1 [5]1 [6]1

[6]F [4]1 [2]2 [9]2 [1]2 [8]2 [3]2 [7]F [5]F

[8]2 [5]1 [3]F [4]F [6]1 [7]2 [9]1 [2]2 [1]2

[9]1 [7]1 [1]1 [2]F [5]1 [3]2 [6]F [8]1 [4]2

--- F:17 1:34 2:30 g:0 ?:0

--- number of solutions: 1

(The clues have a gray background.)

2 3 7 8 4 1 5 6 9

1 8 6 7 9 5 2 4 3

5 9 4 3 2 6 7 1 8

3 1 5 6 7 4 8 9 2

4 6 9 5 8 2 1 3 7

7 2 8 1 3 9 4 5 6

6 4 2 9 1 8 3 7 5

8 5 3 4 6 7 9 2 1

9 7 1 2 5 3 6 8 4

Using only the simple deduction methods used by the program, hard sudoku puzzles (Arto Inkala, David Filmer)

require several guesses. A more sophisticated program would use more (and more complex) deduction methods.

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 32 (265)

Klotski solver (part 1, problem formulation)

The so-called klotski puzzle is a sliding block puzzle. Given an initial set of blocks placed inside an enclosure, the

player has to move the blocks one at a time without lifting them (i.e., sliding them) with the goal of reaching a certain

final configuration. In most cases the final configuration consists of placing one of the pieces, usually the largest one,

in a certain position. The following figure presents one very popular puzzle of this kind.

=⇒ 116 moves later. . . =⇒
The following slides describe a program capable of solving small puzzles of this kind. Is has the following characteristics:

• the shape of the puzzle pieces (1× 1, 2× 1, 1× 2 and 2× 2) is hardwired in the code

• the puzzle enclosure shape is rectangular, with a width and a height that are at most 8,

• it reports a solution with the smallest number of moves (one move is a piece movement to an adjacent location).

The program preforms a breadth-first search because we are interested in a solution with the smallest number of

moves. It starts with the initial configuration (generation 0) and produces all possible configurations obtained from

it by performing one movement of one piece (this gives rise to generation 1). From that point onward, generation n

is obtained by considering all possible piece movements (to an adjacent location) for each of the generation n − 1

configurations; the generation n configurations are the new ones (those not observed before). The search terminates

either when a solution is found or when there are no more new configurations.

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 33 (266)

Klotski solver (part 2, fundamental data types, defines, and some global variables)

To simplify things, it was decided to make available only the following four piece shapes:

shape 0: shape 1: shape 2: shape 3:

The shape number can be encoded using only two bits. It was also decided to restrict coordinates to the values

0, 1, . . . , 7, so that each of the two coordinates can be encoded in only 3 bits. The following declarations of data

types and some macro definitions reflect these choices. (Some global variables are also declared.)
#include <stdio.h>

#include <assert.h>

#include <stdlib.h>

#include <string.h>

typedef unsigned int u32; // for hash table indices

typedef unsigned char u08; // piece info: shape in bits 7..6, x coordinate in bits 5..3, y coordinate in bits 2..0

#define info(s,x,y) (u08)(((s) << 6) | ((x) << 3) | ((y) << 0))

#define s_info(p) (((int)(p) >> 6) & 3)

#define x_info(p) (((int)(p) >> 3) & 7)

#define y_info(p) (((int)(p) >> 0) & 7)

#define hash_table_size 50000u // the size of the hash table

#define max_width 8 // maximum puzzle width (HARD CODED, do not change)

#define max_height 8 // maximum puzzle height (HARD CODED, do not change)

#define max_n_pieces 16 // maximum number of pieces a puzzle can have

static u32 width; // actual puzzle width

static u32 height; // actual puzzle height

static u32 n_pieces; // actual number of pieces of the puzzle

static u08 goal; // puzzle goal (piece shape and position)

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 34 (267)

Klotski solver (part 3a, hash table node data type)

The puzzle configurations will be stored in a hash table. Assuming a sufficiently large hash table size, this makes

checking if a configuration is new or not an O(1) operation (on average).

Each hash table node stores one puzzle configuration. It has the following fields:

• the next_hash_node field keeps a pointer to a possible other hash table node with an equal key (our hash table

will use chaining),

• the pieces[] field keeps the compacted information of each piece shape and coordinates,

• the parent field keeps a pointer to the configuration that gave rise to this one, and

• the next_configuration field keeps a pointer to the next hash table node of the singly-linked link that

implements a queue (for the breadth-first search).

The data in the pieces[] field is stored in sorted order, so that there exists only one representation for a given

puzzle configuration.

Given, the above description, the hash table node data type is as follows:
typedef struct hash_node

{

struct hash_node *next_hash_node; // pointer to the next hash table node with the same key

struct hash_node *parent; // pointer to the configuration that generated this one

struct hash_node *next_configuration; // pointer to the next configuration to try (queue)

u08 pieces[max_n_pieces]; // the actual configuration data

}

hash_node;

[Question: Which field is “the key”? Which field, or fields, is “the value”?

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 35 (268)

Klotski solver (part 3b, more global variables and allocation of a hash table node)

The following four variables keep all necessary information about the hash table and about the breadth-first search

queue:
static hash_node *hash_table[hash_table_size]; // the hash table

static hash_node *free_hash_nodes = NULL; // linked list of tree hash table nodes

static hash_node *first_untried_configuration = NULL; // head of the queue linked list

static hash_node *last_untried_configuration = NULL; // tail of the queue linked list

The following function is used to allocate a new hash table node. To reduce memory allocation overheads (in both

time and space), it allocates nodes 1000 at a time and it manages itself the free nodes (they are kept in a linked list).
static hash_node *allocate_hash_node(void)

{

hash_node *hn;

int i;

if(free_hash_nodes == NULL)

{

free_hash_nodes = (hash_node *)malloc((size_t)1000 * sizeof(hash_node));

for(i = 0;i < 999;i++)

free_hash_nodes[i].next_hash_node = &free_hash_nodes[i + 1];

free_hash_nodes[i].next_hash_node = NULL;

}

hn = free_hash_nodes;

free_hash_nodes = free_hash_nodes->next_hash_node;

return hn;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 36 (269)

Klotski solver (part 3c, hash table initialization and hash function)

The following function initializes the hash table array and the breadth-first search queue.
void init_hash_table(void)

{

u32 i;

for(i = 0u;i < hash_table_size;i++)

hash_table[i] = NULL;

free_hash_nodes = NULL;

first_untried_configuration = NULL;

last_untried_configuration = NULL;

}

The next function computes the hash function of a given puzzle configuration (in canonical form, i.e., it is assumed

that the pieces[] array is already sorted in increasing order).
static u32 hash_function(const u08 *pieces)

{

static u32 table[256];

u32 crc,i,j;

if(table[1] == 0u) // do we need to initialize the table[] array?

for(i = 0u;i < 256u;i++)

for(table[i] = i,j = 0u;j < 8u;j++)

if(table[i] & 1u)

table[i] = (table[i] >> 1) ^ 0xAED00022u; // "magic" constant

else

table[i] >>= 1;

crc = 0xAED02016u; // initial value (chosen arbitrarily)

for(i = 0u;i < (u32)n_pieces;i++)

crc = (crc >> 8) ^ table[crc & 0xFFu] ^ ((u32)pieces[i] << 24);

return crc % hash_table_size;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 37 (270)

Klotski solver (part 3d, insert a configuration)

Now comes one of the most important functions: it checks if the configuration it is given is new or not, and if it is it

inserts it in the hash table and in the breadth-first search queue.
static int insert_configuration(u08 *pieces,hash_node *parent)

{

hash_node *hn; int i,j; u32 idx;

// sort the pieces[] array using insertion sort (canonical representation!)

for(i = 1;i < n_pieces;i++)

{

u08 tmp = pieces[i];

for(j = i;j > 0 && tmp < pieces[j - 1];j--)

pieces[j] = pieces[j - 1];

pieces[j] = tmp;

}

// check if this is a new configuration

idx = hash_function(pieces);

for(hn = hash_table[idx];hn != NULL && memcmp(pieces,hn->pieces,n_pieces) != 0;hn = hn->next_hash_node)

;

if(hn != NULL) return 0; // this configuration is already in the hash table, do nothing

// it is a new configuration, insert it in the hash table and in the breadth-first search queue

hn = allocate_hash_node();

hn->next_hash_node = hash_table[idx];

hash_table[idx] = hn;

hn->parent = parent;

if(first_untried_configuration == NULL)

first_untried_configuration = last_untried_configuration = hn;

else

last_untried_configuration = last_untried_configuration->next_configuration = hn;

hn->next_configuration = NULL;

memcpy(hn->pieces,pieces,n_pieces);

return 1;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 38 (271)

Klotski solver (part 4a, piece map)

It is now time to arrange a way to check if a piece can be moved to an adjacent square in a relatively efficent way.

This is going to be done by constructing a map of the puzzle.
static char map[max_width + 2][max_height + 2];

The border of the map will be marked with a plus sign (’+’, chosen more or less arbitrarily), an empty square will be

marked with a space (’ ’, also chosen more or less arbitrarily), and the square, or squares, where each piece lies will

be marked with the piece’s number.
static void init_map(u08 *pieces)

{

int i,x,y,s;

// initialize map (with a border)

for(x = 0;x < width + 2;x++)

for(y = 0;y < height + 2;y++)

map[x][y] = (x == 0 || x == width + 1 || y == 0 || y == height + 1) ? '+' : ' ';

// put the pieces on the map

for(i = 0;i < n_pieces;i++)

{

s = s_info(pieces[i]);

x = x_info(pieces[i]) + 1;

y = y_info(pieces[i]) + 1;

switch(s)

{

case 0: map[x][y] = (char)i; break;

case 1: map[x][y] = map[x + 1][y] = (char)i; break;

case 2: map[x][y] = map[x][y + 1] = (char)i; break;

case 3: map[x][y] = map[x][y + 1] = map[x + 1][y] = map[x + 1][y + 1] = (char)i; break;

}

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 39 (272)

Klotski solver (part 4b, piece map output)

The following function outputs a puzzle configuration. Each piece is represented by a lower case letter. The output

could be beautified but that is not worth the trouble.
static void print_map(void)

{

int x,y;

for(y = height;y >= 1;y--)

{

for(x = 1;x <= width;x++)

putchar((map[x][y] < n_pieces) ? 'a' + map[x][y] : map[x][y]);

putchar('\n');

}

putchar('\n');

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 40 (273)

Klotski solver (part 4c, attempt to move a piece)

The following function receives the index (i) of a piece and a movement displacement (dx and dy) and attempts to

move that piece to its new position. If the new configuration solves the puzzle it returns 1. Otherwise it return 0.
static int try_move(u08 *pieces,int i,int dx,int dy,hash_node *parent)

{

u08 new_pieces[max_n_pieces];

int x,y,s,j;

s = s_info(pieces[i]);

x = x_info(pieces[i]) + 1 + dx;

y = y_info(pieces[i]) + 1 + dy;

// can we move in this direction?

if(map[x][y] != (char)i && map[x][y] != ' ') return 0;

if((s == 2 || s == 3) && map[x][y + 1] != (char)i && map[x][y + 1] != ' ') return 0;

if((s == 1 || s == 3) && map[x + 1][y] != (char)i && map[x + 1][y] != ' ') return 0;

if(s == 3 && map[x + 1][y + 1] != (char)i && map[x + 1][y + 1] != ' ') return 0;

// yes we can!

for(j = 0;j < n_pieces;j++)

new_pieces[j] = pieces[j];

new_pieces[i] = info(s,x - 1,y - 1);

if(insert_configuration(new_pieces,parent) == 0)

return 0;

for(j = 0;j < n_pieces && new_pieces[j] != goal;j++)

;

return (j < n_pieces) ? 1 : 0;

}

Note that the functions init_map() and try_move() are the ones where the shape of the pieces is hard-coded.

It is not difficult to lift that restriction. As stated before, that was not done to simplify the code (and to make it

shorter).

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 41 (274)

Klotski solver (part 5, solve the puzzle)

It is now time to present the function that actually solves the puzzle. It performs a breadth-first search by removing

configurations from the queue until the solution is found or until there are no more configurations to consider. When

this function returns, the variable last_untried_configuration points to the first solution; if it is NULL no

solution exists.
static void solve_puzzle(u08 *initial_configuration)

{

hash_node *hn;

int i;

assert(width <= max_width && height <= max_height && n_pieces <= max_n_pieces);

init_hash_table();

insert_configuration(initial_configuration,NULL);

// do a breadth-first search

while(first_untried_configuration != NULL)

{

hn = first_untried_configuration;

first_untried_configuration = first_untried_configuration->next_configuration;

if(hn == last_untried_configuration)

last_untried_configuration = NULL;

init_map(hn->pieces);

for(i = 0;i < n_pieces;i++)

{

if(try_move(hn->pieces,i, 1, 0,hn) != 0) return; // return early if solved

if(try_move(hn->pieces,i,-1, 0,hn) != 0) return; // return early if solved

if(try_move(hn->pieces,i, 0, 1,hn) != 0) return; // return early if solved

if(try_move(hn->pieces,i, 0,-1,hn) != 0) return; // return early if solved

}

}

// not solved

assert(last_untried_configuration == NULL);

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 42 (275)

Klotski solver (part 6, main function)

We have finally reached the main function. If the puzzle has a solution, it prints it backwards (stating from the

solution until the initial configuration is reached). This is done by following the parent pointers.
int main(void)

{

u08 pieces[max_n_pieces];

hash_node *hn;

int i;

width = 4;

height = 5;

n_pieces = 10;

pieces[0] = info(0,0,0);

pieces[1] = info(0,3,0);

pieces[2] = info(2,0,1);

pieces[3] = info(0,1,1);

pieces[4] = info(0,2,1);

pieces[5] = info(2,3,1);

pieces[6] = info(1,1,2);

pieces[7] = info(2,0,3);

pieces[8] = info(3,1,3);

pieces[9] = info(2,3,3);

goal = info(3,1,0);

solve_puzzle(pieces);

for(i = 0,hn = last_untried_configuration;hn != NULL;i++,hn = hn->parent)

{

init_map(hn->pieces);

printf("move -%d\n",i);

print_map();

}

printf("%d moves\n",i - 1);

return 0;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.09 JT.09I page 43 (276)

Finding all possibilities (exercises)

— P.09 —

AED 2022/2023
Tomás Oliveira e Silva

Home JT.09I P.09 page 1 (277)

Graphs
— T.10 —

Summary:

• Introduction (definitions and examples)

• Data structures for graphs

• Graph traversal

• Connected components

• Connected components using the union-find data

structure

• All paths

• All cycles

• Shortest path

• Minimum spanning tree

The examples on the second half part of this lecture use

the following “test” graph.

2

4

6

1

1

2

2

2

2

1 4

2

2

3

1

1

2

3

4

5

6

7

8

9

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 1 (278)

Bibliography

Recommended bibliography for this lecture:

• The Algorithm Design Manual, Steven S. Skiena, second
edition, Springer, 2008.

• Introduction to Algorithms, Thomas H. Cormen, Charles
E. Leiserson, Ronald L. Rivest, and Clifford Stein, third edi-
tion, The MIT press, 2009.

• Algorithms, Robert Sedgewick and Kevin Wayne, fourth
edition, Addison Wesley, 2011

Useful external stuff:

• Undirected graphs (slides), Sedgewick and Wayne,
Princeton University, USA.

• Directed graphs (slides), Sedgewick and Wayne, Prince-
ton University, USA.

• Union-find (slides), Sedgewick and Wayne, Princeton Uni-
versity, USA.

• Shortest paths (slides), Sedgewick and Wayne, Princeton
University, USA.

• Minimum spanning trees (slides), Sedgewick and Wayne,
Princeton University, USA.

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 2 (279)

http://algs4.cs.princeton.edu/lectures/41UndirectedGraphs.pdf
http://algs4.cs.princeton.edu/lectures/42DirectedGraphs.pdf
http://algs4.cs.princeton.edu/lectures/15UnionFind.pdf
http://algs4.cs.princeton.edu/lectures/44ShortestPaths.pdf
http://algs4.cs.princeton.edu/lectures/43MinimumSpanningTrees.pdf

Introduction (part 1, initial definitions)

A graph G is a pair (V,E), where V is a set of vertices and E is a set of edges.

It is usual to consider that a vertex is a point in a plane (or in space), but that is not strictly necessary; a vertex

is merely an object (a point, a word, a number, a book, a country, et cetera). A vertex usually has one or more

properties. For example, a point usually has coordinates. The number of vertices of G is the number of elements of

V and is denoted by |V |. It is usual to give numbers to the vertices, so that V = {v1, . . . , v|V |}.

An edge e is a pair (vi, vj) of two vertices. The set of edges is a binary relation on V (the binary relation can be

considered to be “connected to,” so that an edge connects two vertices). It is also common to associate a property

to an edge. For example, the vertices may represent cities and the edges may represent distances between pairs of

cities. The number of edges of G is the number of elements of E and is denoted by |E|. Like the vertices, it is usual

to give numbers to the edges, so that E = {e1, . . . , e|E|}. We also have ei = (v1i, v2i), i.e., edge ei connects

the vertices v1i and v2i.

A graph is directed (called a digraph) when the edges are ordered pairs of vertices. For directed graphs, edge

ei departs from (or leaves, or is incident from) vertex v1i, and arrives at (or enters, or is incident to)

vertex v2i. In drawings, vertices are usually represented by dots or circles, and edges are represented by line or curve

segments terminated by an arrow (sometimes the arrow is drawn in the middle of the segment instead of at its end).

A graph is undirected when the edges are unordered pairs of vertices, i.e., (ei, ej) is considered to be the same as

(ej, ei). For undirected graphs, edge ei is incident on both v1i and v2i. In drawings the edges do not have arrows.

The degree of a vertex of an undirected graph is the number of edges incident on it. For directed graphs the

in-degree and out-degree of a vertex are the number of edges entering and leaving it, and the degree is the sum

of the two.

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 3 (280)

Introduction (part 2, more definitions)

A weighted graph is one where each edge ei has a weight wi (a property of the edge). In an unweighted graph

that does not happen. In drawings, the weight is written near the edge (near its arrow for directed graphs).

A labeled graph is one where each vertex vi has a label li (a property of the vertex) that uniquely identifies it. In

an unlabeled graph that does not happen. In drawings, the label is written either inside the vertex or near it.

A graph is simple if there do not exist more that one edge connecting any pair of vertices and if there do not exist

self-loops, edges of the form (v, v). If that does not happen, the graph is non-simple.

A graph is dense if “is has many edges” and is sparse if it “has few edges.” These definitions are a bit vague (on

purpose). Since the number of vertex pairs of a graph with n vertices can be as high as n(n− 1)/2, one possible

characterization of a dense graph is one in which the number of edges is a sizable fraction of n(n− 1)/2, while a

sparse graph might be one in which the number of edges is a reasonably small multiple of n.

A path of length L starting at vertex vs and ending in vertex vd is a sequence vs, vi, vj, . . . , vd of L+ 1 vertices

such that there exists an edge between consecutive vertices of the sequence. The length of the path is then the

number of edges it contains. By convention, 0-length paths (of course with vd = vs) always exist. The path is

simple if the sequence of vertices does not have repeated vertices. A path is a cycle if L > 0 and if vd = vs (the

cycle is simple if it does nor contain repeated vertices). For a weighted graph, the weight of a path is the sum of the

weights of its edges, The weight of a cycle is defined in a similar way.

The vertices vs and vd are connected if there exists a path that starts at vs and ends at vd. A graph is connected
if all its pairs of vertices are connected.

A graph is acyclic if it does not contain any cycles. Otherwise it is a cyclic graph. A tree is a connected, acyclic,

undirected graph.

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 4 (281)

Introduction (part 3, even more definitions)

The set formed by the arrival vertices of the edges that depart from a vertex v, excluding v itself, is called the

neighborhood of v. The definition can be extended to the neighborhood of a set V ′ of vertices: it is the set formed

by the arrival vertices of the edges that depart from one of the vertices of V ′ and which do not arrive on a vertex of

V ′.

A spanning tree of a connected graph is a subgraph that is i) connected, ii) acyclic, and iii) includes all vertices.

Conditions i) and ii) are the “tree” part and condition iii) is the spanning part of the name “spanning tree.”

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 5 (282)

Introduction (part 4, examples)

Undirected and labeled

A B

D X

H
edge

vertex

label

Directed and weighted

−2

3

4 1

7

6

edge

vertex

weight

What is the degree of each vertex?

Simple Non-simple

isolated

How many connected components?

Dense and connected Sparse and unconnected

Average node degree?

Cyclic

cycle

Acyclic

path

How many paths?

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 6 (283)

Data structures for graphs (part 1, adjacency matrix)

The adjacency matrix is a simple data structure (a |V | × |V | matrix) capable of storing all edge information of

a simple graph (directed or undirected). It should be used when it is known that the graph has a small number of

vertices, or when it is known that it is dense.

For unweighted graphs, the element in row i and column j of the adjacency matrix records the presence (1) or

absence (0) of an edge starting at vertex i and ending at vertex j (for undirected graphs the adjacency matrix is a

symmetric matrix). For weighted graphs it stores the weight of the edge starting at vertex i and ending at vertex j,

if that edge exists, and stores an invalid weight value (for example, a NaN when the weight is a floating point number

or zero if the weights are known to be positive) if it does not exist.

In the following example the adjacency matrix for the graph of the left is shown on the right (in this case the small

zeros signal the absence of the edge):

2

4

6

1

1

2

2

2

2

1 4

2

2

3

1

1

2

3

4

5

6

7

8

9

from\to 1 2 3 4 5 6 7 8 9

1 0 2 4 6 0 0 0 0 0

2 2 0 1 0 1 0 0 0 0

3 4 1 0 0 2 2 0 0 0

4 6 0 0 0 0 0 2 2 0

5 0 1 2 0 0 1 0 0 4

6 0 0 2 0 1 0 2 0 2

7 0 0 0 2 0 2 0 0 3

8 0 0 0 2 0 0 0 0 1

9 0 0 0 0 4 2 3 1 0

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 7 (284)

Data structures for graphs (part 2, adjacency lists)

The adjacency lists is another simple data structure (one linked list of edges per vertex) that is also capable of storing

all edge information of a simple graph (directed or undirected). It should be used when it is known that the graph

has a large number of vertices and that it is sparse (that is usually the case).

In this way to represent a graph, each vertex maintains a linked list of the edges that leave the vertex. For unweighted

graphs, the nodes of the list only need to store the number of, or pointer to, the other vertex and, of course, the

pointer to the next node of the linked list. For weighted graphs, they also store the weight.

In the following example the adjacency lists for the graph of the left are shown on the right (for each linked list node

it is displayed first the other vertex number and then the edge weight):

2

4

6

1

1

2

2

2

2

1 4

2

2

3

1

1

2

3

4

5

6

7

8

9

1 (4, 6)→ (3, 4)→ (2, 2)

2 (5, 1)→ (3, 1)→ (1, 2)

3 (6, 2)→ (5, 2)→ (2, 1)→ (1, 4)

4 (8, 2)→ (7, 2)→ (1, 6)

5 (9, 4)→ (6, 1)→ (3, 2)→ (2, 1)

6 (9, 2)→ (7, 2)→ (5, 1)→ (3, 2)

7 (9, 3)→ (6, 2)→ (4, 2)

8 (9, 1)→ (4, 2)

9 (8, 1)→ (7, 3)→ (6, 2)→ (5, 4)

Note that the order of the edges in each list is arbitrary. Note also that for undirected graphs the size of a linked list

is equal to the degree of its vertex (it is equal to the out-degree of the vertex for directed graphs).

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 8 (285)

Graph traversal (part 1, short description)

Traversing a graph is a fundamental operation. One starts at a given vertex and one moves along the edges until one

visits all possible vertices. This can be done in a depth-first style or in a breadth-first style. Both are useful. The

next slide explains with C code how to do this. That code uses the following data types and support functions.

deque *create_deque(int max_size); // deque creation

void destroy_deque(deque *dq); // deque destruction

int get_lo(deque *dq); // dequeue

int get_hi(deque *dq); // pop

void put_hi(deque *dq,int v); // push or enqueue

typedef struct edge

{

struct edge *next; // next edge node

int vertex_number; // vertex number

int weight; // edge weight

}

edge;

typedef struct vertex

{

edge *out_edges; // adjacency list head

int mark; // for graph traversals

}

vertex;

typedef struct graph

{

vertex *vertices; // array of vertices (pointer)

int n_vertices; // number of vertices

}

graph;

To avoid visiting the same vertex more than once, a vertex is marked when it is touched for the first time (touching

amounts to put the vertex in either a stack or a queue), and, later on, when it is visited and its edges are followed (to

touch other vertices) the mark is given its final value (sequential visitation number). The following function is used

to initialize the marks:
void mark_all_vertices(graph *g,int mark)

{

for(int i = 0;i < g->n_vertices;i++)

g->vertices[i].mark = mark;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 9 (286)

Graph traversal (part 2, code)

Here is the code for a depth-first and a breadth-first traversal of a graph.

void depth_first(graph *g,int initial_vertex)

{

deque *dq;

edge *e;

int i,n;

mark_all_vertices(g,-1);

dq = create_deque(g->n_vertices);

put_hi(dq,initial_vertex);

n = 0;

while(dq->size > 0)

{

i = get_hi(dq); // pop

g->vertices[i].mark = ++n; // visit

for(e = g->vertices[i].out_edges;e != NULL;e = e->next)

if(g->vertices[e->vertex_number].mark == -1)

{ // touch

g->vertices[e->vertex_number].mark = 0;

put_hi(dq,e->vertex_number); // push

}

}

destroy_deque(dq);

}

void breadth_first(graph *g,int initial_vertex)

{

deque *dq;

edge *e;

int i,n;

mark_all_vertices(g,-1);

dq = create_deque(g->n_vertices);

put_hi(dq,initial_vertex);

n = 0;

while(dq->size > 0)

{

i = get_lo(dq); // dequeue

g->vertices[i].mark = ++n; // visit

for(e = g->vertices[i].out_edges;e != NULL;e = e->next)

if(g->vertices[e->vertex_number].mark == -1)

{ // touch

g->vertices[e->vertex_number].mark = 0;

put_hi(dq,e->vertex_number); // enqueue

}

}

destroy_deque(dq);

}

Notice how a small change makes a big difference in visiting order. For the graph used as example a few slides ago,

starting at the vertex number 1 a depth-first traversal visits the vertices in the order 1, 2, 5, 6, 7, 9, 8, 3, 4, and a

breadth-first traversal visits them in the order 1, 4, 3, 2, 8, 7, 6, 5, 9.

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 10 (287)

Connected components

Either version of the graph traversal code can be easily modified so that the new code

• finds all vertices connected to a given one,

[Solution. The code of the previous slide already does this: vertices that at the end have a mark of −1 are not

connected to the starting vertex. Marking the visited vertices with the vertex visiting order is not necessary!]

• subdivides a graph into connected components,

[Solution. Mark initially all vertices with −1. Set a region number also to −1. Then, do the following until

all vertices have a non-negative mark: Increase the region number by one; Find a vertex with a negative mark;

Apply one of the algorithms to mark all vertices connected to it (when they are first touched) with the current

region number.]

• determines if the graph is cyclic or acyclic.

[Solution. Apply the method of the previous item but stop it saying the graph is cyclic if the algorithm touches

a vertex that has already been touched and that has the same region number!]

The breadth-first variant can also be easily modified to find the smallest distance, in terms of number of edges

traveled, between a starting vertex and all other vertices connected to it.

[Solution. Mark each touched vertex with one more than the mark of the vertex being visited.] (The depth-first

variant can also do this, but in a more complex way.)

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 11 (288)

Connected components using the union-find data structure (part 1, problem)

The union-find data structure is an efficient way to keep track of the connected components of an undirected graph.

(There are other application of this data structure.) Its main operations are

• [Union] replace the connected components containing vertices p and q with their union (if the vertices belong

to the same component then there is nothing to to, otherwise join the two components), and

• [Find] given a vertex p, find the vertex q that represents the connected component that p belongs to.

To keep the connectivity information of a graph up-to-date for each edge insertion do an union operation of its

incident vertices. Checking if two vertices are connected amounts to check if the representatives of their connected

components are the same.

In the following example, an edge between vertices 1 and 2 is inserted in the graph. In this case the corresponding

union operation joints two connected components.

0 1 2 3

4 5 6 7

Four connected components

{0, 1, 4}, {2, 6, 7}, {3}, {5}

Union(1,2)
=====⇒

0 1 2 3

4 5 6 7

Three connected components

{0, 1, 2, 4, 6, 7}, {3}, {5}

One of the vertices of each connected component will be the representative vertex of that component. For a graph

without edges, each vertex is the representative vertex of its component (each component has only one vertex). Each

union operation just makes the representative of the component of its second argument be the representative of the

first.

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 12 (289)

Connected components using the union-find data structure (part 2a, code)

In order to keep track of the representative (vertex number) of each connected component and of the number of

connected components, the vertex and graph structures need to be modified as follows.
typedef struct vertex

{

edge *out_edges; // adjacency list head

int mark; // for graph traversals

int representative; // vertex number of representative

}

vertex;

typedef struct graph

{

vertex *vertices; // array of vertices (pointer)

int n_vertices; // number of vertices

int n_connected_components; // number of connected components

}

graph;

The following extra code should be placed in the function that creates an empty graph.
g->n_connected_components = n_vertices;

for(int i = 0;i < n_vertices;i++)

g->vertices[i].representative = i;

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 13 (290)

Connected components using the union-find data structure (part 2b, code)

As stated previously, the union operation amounts to change the representative of one connected region to be the

representative of another connected region. Thus, in order to find the vertex number of the representative vertex of

a connected region it is this necessary to follow the representative numbers until there is no change. To speed up

subsequent queries, the representative numbers of all vertices that were visited in the query should be updated with

the current representative number (that is called path compression). The following function does all this.
int find_representative(graph *g,int vertex_number)

{

int i,j,k;

// find (linked list done with index numbers!)

for(i = vertex_number;i != g->vertices[i].representative;i = g->vertices[i].representative)

;

// path compression

for(j = vertex_number;j != i;j = k)

{

k = g->vertices[j].representative;

g->vertices[j].representative = i;

}

return i;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 14 (291)

Connected components using the union-find data structure (part 2c, code)

Finally, the function that adds an edge to the graph needs to be updated to maintain the union-find data.
int add_edge(graph *g,int from,int to,int weight)

{

edge *e;

assert(from >= 0 && from < g->n_vertices && to >= 0 && to < g->n_vertices && from != to);

for(e = g->vertices[from].out_edges;e != NULL && e->vertex_number != to;e = e->next)

;

if(e != NULL)

return 0;

e = create_edge();

e->next = g->vertices[from].out_edges;

g->vertices[from].out_edges = e;

e->vertex_number = to;

e->weight = weight;

int fi = find_representative(g,from);

int ti = find_representative(g,to);

if(fi != ti)

{ // union

g->vertices[ti].representative = fi;

g->n_connected_components--;

}

return 1;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 15 (292)

All paths (part 1, problem description and solution

Problem: given two distinct vertices of a graph, find all simple paths that begin at the first given vertex (the

departure vertex) and end at the second given vertex (the destination vertex).

Solution: Do a depth-first traversal starting at the departure vertex, using the vertex marks to keep track of the

path being built. In particular,

• the depth-first traversal can be done using recursion (that is not possible in a breadth-first traversal),

• the depth-first traversal should backtrack when the destination vertex is reached,

• initially mark all vertices with, say, −1 (an invalid vertex number),

• do not follow an edge if it arrives at an already marked vertex, and

• when following an edge, mark the vertex it departs from with the number of the vertex it arrives at (do not forget

to unmark it when backtracking!).

Marking with vertex numbers is quite useful because these marks can be used to follow each complete path from its

departing vertex to its destination vertex (a linked list!).

Task: For our test graph, enumerate all paths starting at vertex

1 and ending at vertex 9. Identify the paths with the smallest and

largest weights (the weight of a path is the sum of the weights

of its edges).

Curiosity: In a complete undirected graph with n vertices there

are f(n) paths between any two vertices, where f(1) = 0,

f(2) = 1, and, for n > 2, f(n) = (n− 2)f(n− 1) + 1.

Note that f(n) ≈ e · (n− 2)!

n f(n) n f(n) n f(n)

1 0 5 16 9 13700

2 1 6 65 10 109601

3 2 7 326 11 986410

4 5 8 1957 12 9864101

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 16 (293)

All paths (part 2, code)

The following C functions implement one possible solution to the all paths problem posed in the previous slide.
void all_paths_r(graph *g,int initial_vertex,int final_vertex,int current_vertex,int current_weight)

{

int i;

if(current_vertex == final_vertex)

{ // found one!

printf(" %d",(i = initial_vertex) + 1);

do

printf(" -> %d",(i = g->vertices[i].mark) + 1);

while(i != final_vertex);

printf(" [%d]\n",current_weight);

}

else

for(edge *e = g->vertices[current_vertex].out_edges;e != NULL;e = e->next)

if(g->vertices[e->vertex_number].mark < 0)

{

g->vertices[current_vertex].mark = e->vertex_number;

all_paths_r(g,initial_vertex,final_vertex,e->vertex_number,current_weight + e->weight);

g->vertices[current_vertex].mark = -1;

}

}

void all_paths(graph *g,int initial_vertex,int final_vertex)

{

assert(initial_vertex != final_vertex);

printf("all paths between vertices %d and %d\n",initial_vertex + 1,final_vertex + 1);

mark_all_vertices(g,-1);

all_paths_r(g,initial_vertex,final_vertex,initial_vertex,0);

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 17 (294)

All paths (part 3, example)

There are 33 paths starting at vertex 1 and ending at vertex 9:

1→ 4→ 8→ 9 (weight 9)
1→ 4→ 7→ 9 (weight 11)
1→ 4→ 7→ 6→ 9 (weight 12)
1→ 4→ 7→ 6→ 5→ 9 (weight 15)
1→ 4→ 7→ 6→ 3→ 5→ 9 (weight 18, largest)
1→ 4→ 7→ 6→ 3→ 2→ 5→ 9 (weight 18, largest)
1→ 3→ 6→ 9 (weight 8)
1→ 3→ 6→ 7→ 9 (weight 11)
1→ 3→ 6→ 7→ 4→ 8→ 9 (weight 13)
1→ 3→ 6→ 5→ 9 (weight 11)
1→ 3→ 5→ 9 (weight 10)
1→ 3→ 5→ 6→ 9 (weight 9)
1→ 3→ 5→ 6→ 7→ 9 (weight 12)
1→ 3→ 5→ 6→ 7→ 4→ 8→ 9 (weight 14)
1→ 3→ 2→ 5→ 9 (weight 10)
1→ 3→ 2→ 5→ 6→ 9 (weight 9)
1→ 3→ 2→ 5→ 6→ 7→ 9 (weight 12)

1→ 3→ 2→ 5→ 6→ 7→ 4→ 8→ 9 (weight 14)
1→ 2→ 5→ 9 (weight 7)
1→ 2→ 5→ 6→ 9 (weight 6, smallest)
1→ 2→ 5→ 6→ 7→ 9 (weight 9)
1→ 2→ 5→ 6→ 7→ 4→ 8→ 9 (weight 11)
1→ 2→ 5→ 3→ 6→ 9 (weight 9)
1→ 2→ 5→ 3→ 6→ 7→ 9 (weight 12)
1→ 2→ 5→ 3→ 6→ 7→ 4→ 8→ 9 (weight 14)
1→ 2→ 3→ 6→ 9 (weight 7)
1→ 2→ 3→ 6→ 7→ 9 (weight 10)
1→ 2→ 3→ 6→ 7→ 4→ 8→ 9 (weight 12)
1→ 2→ 3→ 6→ 5→ 9 (weight 10)
1→ 2→ 3→ 5→ 9 (weight 9)
1→ 2→ 3→ 5→ 6→ 9 (weight 8)
1→ 2→ 3→ 5→ 6→ 7→ 9 (weight 11)
1→ 2→ 3→ 5→ 6→ 7→ 4→ 8→ 9 (weight 13)

The path with the smallest weight is, in this case, not one of the paths with the smallest number of edges.

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 18 (295)

All cycles

Problem: Find all simple cycles (closed paths) of a graph.

Solution: Do a depth-first traversal starting at each vertex, never move to a vertex with a number (index) smaller

than that of the starting vertex, and using the vertex marks to keep track of the cycle being built. In particular,

• the depth-first traversal can be done using recursion (that is not possible in a breadth-first traversal),

• the depth-first traversal should backtrack when a cycle is found,

• initially mark all vertices with, say, −1 (an invalid vertex number),

• do not follow an edge if it arrives at an already marked vertex or if that vertex has a number (index) smaller than

that of the starting vertex , and

• when following an edge, mark the vertex it departs from with the number of the vertex it arrives at (do not forget

to unmark it when backtracking!).

Task: Enumerate all cycles of our test graph. Identify the cycles

with the smallest and largest weights (the weight of a cycle is

the sum of the weights of its edges).

Curiosity: In a complete undirected graph with n vertices there

are g(n) cycles, where g(1) = g(2) = 0, g(3) = 1, and, for

n > 3, g(n) = (n−1)(n−2)
2

+ng(n−1)−(n−1)g(n−2).

Note that

g(n) =
n!

2

n∑
k=3

1

k(n− k)!
≈
e

2

(n+ 1)!

n2
.

n f(n) n f(n) n f(n)

1 0 5 37 9 62814

2 0 6 197 10 556014

3 1 7 1172 11 5488059

4 7 8 8018 12 59740609

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 19 (296)

All cycles (part 2, code)

The following C functions implement one possible solution to the all cycles problem posed in the previous slide.
void all_cycles_r(graph *g,int initial_vertex,int current_vertex,int current_weight)

{

int i;

for(edge *e = g->vertices[current_vertex].out_edges;e != NULL;e = e->next)

if(e->vertex_number == initial_vertex)

{ // found one!

if(g->vertices[initial_vertex].mark < current_vertex)

{ // make sure each cycle is reported only once (and ignore cycles with only two edges)

printf(" %d",(i = initial_vertex) + 1);

do

printf(" -> %d",(i = g->vertices[i].mark) + 1);

while(i != current_vertex);

printf(" -> %d [%d]\n",initial_vertex + 1,current_weight + e->weight);

}

}

else if(e->vertex_number > initial_vertex && g->vertices[e->vertex_number].mark < 0)

{

g->vertices[current_vertex].mark = e->vertex_number;

all_cycles_r(g,initial_vertex,e->vertex_number,current_weight + e->weight);

g->vertices[current_vertex].mark = -1;

}

}

void all_cycles(graph *g)

{

printf("all cycles\n");

mark_all_vertices(g,-1);

for(int i = 0;i < g->n_vertices;i++)

all_cycles_r(g,i,i,0);

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 20 (297)

All cycles (part 3, example)

1→ 3→ 6→ 9→ 8→ 4→ 1 (weight 17)
1→ 3→ 6→ 9→ 7→ 4→ 1 (weight 19)
1→ 3→ 6→ 7→ 9→ 8→ 4→ 1 (weight 20)
1→ 3→ 6→ 7→ 4→ 1 (weight 16)
1→ 3→ 6→ 5→ 9→ 8→ 4→ 1 (weight 20)
1→ 3→ 6→ 5→ 9→ 7→ 4→ 1 (weight 22, largest)
1→ 3→ 5→ 9→ 8→ 4→ 1 (weight 19)
1→ 3→ 5→ 9→ 7→ 4→ 1 (weight 21)
1→ 3→ 5→ 9→ 6→ 7→ 4→ 1 (weight 22, largest)
1→ 3→ 5→ 6→ 9→ 8→ 4→ 1 (weight 18)
1→ 3→ 5→ 6→ 9→ 7→ 4→ 1 (weight 20)
1→ 3→ 5→ 6→ 7→ 9→ 8→ 4→ 1 (weight 21)
1→ 3→ 5→ 6→ 7→ 4→ 1 (weight 17)
1→ 3→ 2→ 5→ 9→ 8→ 4→ 1 (weight 19)
1→ 3→ 2→ 5→ 9→ 7→ 4→ 1 (weight 21)
1→ 3→ 2→ 5→ 9→ 6→ 7→ 4→ 1 (weight 22, largest)
1→ 3→ 2→ 5→ 6→ 9→ 8→ 4→ 1 (weight 18)
1→ 3→ 2→ 5→ 6→ 9→ 7→ 4→ 1 (weight 20)
1→ 3→ 2→ 5→ 6→ 7→ 9→ 8→ 4→ 1 (weight 21)
1→ 3→ 2→ 5→ 6→ 7→ 4→ 1 (weight 17)
1→ 2→ 5→ 9→ 8→ 4→ 7→ 6→ 3→ 1 (weight 20)
1→ 2→ 5→ 9→ 8→ 4→ 1 (weight 16)
1→ 2→ 5→ 9→ 7→ 6→ 3→ 1 (weight 18)
1→ 2→ 5→ 9→ 7→ 4→ 1 (weight 18)
1→ 2→ 5→ 9→ 6→ 7→ 4→ 1 (weight 19)
1→ 2→ 5→ 9→ 6→ 3→ 1 (weight 15)
1→ 2→ 5→ 6→ 9→ 8→ 4→ 1 (weight 15)
1→ 2→ 5→ 6→ 9→ 7→ 4→ 1 (weight 17)
1→ 2→ 5→ 6→ 7→ 9→ 8→ 4→ 1 (weight 18)
1→ 2→ 5→ 6→ 7→ 4→ 1 (weight 14)
1→ 2→ 5→ 6→ 3→ 1 (weight 10)
1→ 2→ 5→ 3→ 6→ 9→ 8→ 4→ 1 (weight 18)
1→ 2→ 5→ 3→ 6→ 9→ 7→ 4→ 1 (weight 20)

1→ 2→ 5→ 3→ 6→ 7→ 9→ 8→ 4→ 1 (weight 21)
1→ 2→ 5→ 3→ 6→ 7→ 4→ 1 (weight 17)
1→ 2→ 5→ 3→ 1 (weight 9)
1→ 2→ 3→ 6→ 9→ 8→ 4→ 1 (weight 16)
1→ 2→ 3→ 6→ 9→ 7→ 4→ 1 (weight 18)
1→ 2→ 3→ 6→ 7→ 9→ 8→ 4→ 1 (weight 19)
1→ 2→ 3→ 6→ 7→ 4→ 1 (weight 15)
1→ 2→ 3→ 6→ 5→ 9→ 8→ 4→ 1 (weight 19)
1→ 2→ 3→ 6→ 5→ 9→ 7→ 4→ 1 (weight 21)
1→ 2→ 3→ 5→ 9→ 8→ 4→ 1 (weight 18)
1→ 2→ 3→ 5→ 9→ 7→ 4→ 1 (weight 20)
1→ 2→ 3→ 5→ 9→ 6→ 7→ 4→ 1 (weight 21)
1→ 2→ 3→ 5→ 6→ 9→ 8→ 4→ 1 (weight 17)
1→ 2→ 3→ 5→ 6→ 9→ 7→ 4→ 1 (weight 19)
1→ 2→ 3→ 5→ 6→ 7→ 9→ 8→ 4→ 1 (weight 20)
1→ 2→ 3→ 5→ 6→ 7→ 4→ 1 (weight 16)
1→ 2→ 3→ 1 (weight 7)
2→ 3→ 6→ 9→ 5→ 2 (weight 10)
2→ 3→ 6→ 7→ 9→ 5→ 2 (weight 13)
2→ 3→ 6→ 7→ 4→ 8→ 9→ 5→ 2 (weight 15)
2→ 3→ 6→ 5→ 2 (weight 5)
2→ 3→ 5→ 2 (weight 4, smallest)
3→ 5→ 9→ 8→ 4→ 7→ 6→ 3 (weight 15)
3→ 5→ 9→ 7→ 6→ 3 (weight 13)
3→ 5→ 9→ 6→ 3 (weight 10)
3→ 5→ 6→ 3 (weight 5)
4→ 7→ 9→ 8→ 4 (weight 8)
4→ 7→ 6→ 9→ 8→ 4 (weight 9)
4→ 7→ 6→ 5→ 9→ 8→ 4 (weight 12)
5→ 6→ 9→ 5 (weight 7)
5→ 6→ 7→ 9→ 5 (weight 10)
6→ 7→ 9→ 6 (weight 7)
[There are 65 cycles.]

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 21 (298)

Shortest path (part 1, problem formulation)

Problem: Given a weighted directed graph, find the path with the smallest weight between a given source vertex s

and a given destination vertex d (connected to s). Assume that all weights are nonnegative.

Similar problem: Given a weighted directed graph and a source vertex s, find the paths with smallest weight to all

other vertices of the graph (in the same connected component). Assume that all weights are nonnegative.

Related problem: Given a weighted directed graph, find the path with the smallest weight between a given source

vertex and a given destination vertex (connected to s). Assume that the weights can take positive, zero, or negative

values, and that all cycles have a positive weight.

Possible solution: Use brute force. Generate all possible paths between s and d and choose one with the smallest

weight. Bad idea! The number of paths that may need to be checked can be very large.

Solution: Exploit the property that if a path of smallest weight passes through vertex v then its sub-path from s

to v has the smallest possible weight of all paths starting at s and ending at v. (If that were not the case then that

sub-path could be replaced by a better one.)

Let W (s, v) be the weight of the best path that starts at s and ends at v. Our problem is to find W (s, d) and

to find a path with this weight. Let wp,q be the weight of the edge that connects p to q (if there is no edge wp,q is

+∞). We have

W (s, d) = min
v∈V

(
W (s, v) + wv,d

)
.

To solve the problem it is thus necessary to solve smaller problems of the same type. As explained in the next slide,

it is better to organize the computation so that larger and larger problems are solved (instead of smaller and smaller

as this equation implies).

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 22 (299)

Shortest path (part 2, solution [Dijkstra’s algorithm])

To implement the equation at the bottom of the previous slide it is necessary to find all edges that arrive at d. That

information is not stored in the graph data structures that we have been using in these slides (for each vertex only

the edges that leave the vertex are stored). Although this can be solved easily, it remains the problem of how to

organize the computation (in a dynamic programming style) so that cycles in the graph do not give rise to cycles in

the algorithm.

It turns out that it is easier to construct the solution, one vertex at a time, starting at vertex s. Suppose that V ′

is a subset of V that contains s, that W (s, p) is already known for all p ∈ V ′, and that V ′ contains the |V ′|
vertices with the smallest values of W (s, v). Initially V ′ = {s} and W (s, s) = 0. Each step of the algorithm

selects an edge departing from a vertex p ∈ V ′ and arriving at a vertex q ∈ V − V ′ (in the neighborhood of V ′),

so that W (s, p) +wp,q is minimized. (Break ties arbitrarily.) This ensures, for the vertices p and q of the selected

edge, that W (s, q) = W (s, p) +wp,q, because since edge weights are nonnegative any other path would not be

better. If q is d we are done. Otherwise, add q to V ′ and repeat the procedure. Best paths can be reconstructed

by recording the edges that were selected (store in vertex q the corresponding p, so that paths can be traced back

from d to s).

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 23 (300)

Shortest path (part 3, implementation details)

For each vertex v keep

• the weight Z(s, v) of the current best path from s to v — if v ∈ V ′ then W (s, v) = Z(s, v),

• the number of the previous vertex, P (v), of the current best path ending at the vertex.

Initially, set Z(s, s) = 0 and set Z(s, v) =∞ for the other vertices. When a vertex p is added to V ′ (the first

one will be s itself), for all vertices q that p is connected to check if Z(s, q) is larger than Z(s, p) + wp,q. If it

is, set Z(s, q) to Z(s, p) + wp,q and set P (q) = p.

The next vertex to be added to V ′ will be the one, not already there, with the smallest value of W (s, v). To do

this efficiently, the values of W (s, v) can be kept in a min-heap. This is not entirely trivial to do, because it is

necessary to keep track of the position where each Z(s, v) value is stored in the heap. This is necessary because it

may be necessary to decrease its value. It is thus also necessary, for each vertex v, to keep

• the heap position (an index) where Z(s, v) is stored.

It can be shown that this algorithm takes O
(
|E| log |V |

)
time to finish.

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 24 (301)

Shortest path (part 4a, code – data structures)

To simplify the code the min heap data can be placed inside the data structures used to represent a graph (the vertex

mark field is not needed here).
typedef struct edge edge;

typedef struct vertex vertex;

typedef struct graph graph;

struct edge

{

edge *next; // next edge node

int vertex_number; // vertex number

int weight; // edge weight

};

struct vertex

{

edge *out_edges; // adjacency list head

vertex *trace_back; // "follow-path-back" vertex

int weight; // shortest path weight

int heap_index; // min heap index of this vertex

};

struct graph

{

vertex *vertices; // the vertices

int n_vertices; // number of vertices

vertex **heap; // heap of vertex pointers

int heap_size; // current heap size

};

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 25 (302)

Shortest path (part 4b, code – update vertex data)

The following function updates Z(s, q) given p and Z(s, p) +wp,q. The function argument from is a pointer to

the vertex p, the argument to is a pointer to q, and the argument weight is Z(s, p) + wp,q. The function also

keeps vertices in their proper places in the min-heap.
static void update_weight(graph *g,vertex *from,vertex *to,int weight)

{

int i;

if(to->trace_back != NULL && to->weight <= weight)

return; // not better

to->weight = weight;

to->trace_back = from;

if(to->heap_index > 0)

i = to->heap_index; // already in the heap

else

i = ++g->heap_size; // augment heap

for(;i > 1 && g->heap[i / 2]->weight > weight;i /= 2)

(g->heap[i] = g->heap[i / 2])->heap_index = i;

(g->heap[i] = to)->heap_index = i;

}

The trace_back fields are initialized to NULL, so that is used to deal correctly with the first update of the to data.

The heap_index fields are also initialized to 0, so that is used to check if to is already in the min-heap (if so, it

says where it is).

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 26 (303)

Shortest path (part 4c, code – get vertex with the smallest path weight)

The following function used the min-heap data to retrieve the vertex with the smallest path weight. It returns NULL

when the min-heap is empty.
static vertex *get_vertex_with_min_weight(graph *g)

{

vertex *v,*t;

int i,j;

if(g->heap_size == 0)

return NULL;

v = g->heap[1];

t = g->heap[g->heap_size--];

for(i = 1;2 * i <= g->heap_size;i = j)

{

j = (2 * i + 1 <= g->heap_size && g->heap[2 * i + 1]->weight < g->heap[2 * i]->weight) ? 2 * i + 1 : 2 * i;

(g->heap[i] = g->heap[j])->heap_index = i;

}

(g->heap[i] = t)->heap_index = i;

v->heap_index = 0; // do this last bacause t = v when the heap becomes empty

return v;

}

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 27 (304)

Shortest path (part 4d, code – the algorithm)

Finally, the Dijkstra algorithm. First, the vertex data and the min-heap are initialized. Then, vertices are extracted

from the min-heap one at a time, all their outgoing edges are followed, that the information of each destination vertex

is updated. The function computes the path of smallest weight from the starting vertex to all other vertices. It would

be trivial to modify the code to stop the algorithm when the best path to a given destination vertex becomes known.
static void shortest_paths(graph *g,int starting_vertex)

{

vertex *v;

edge *e;

int i;

assert(starting_vertex >= 0 && starting_vertex < g->n_vertices);

for(i = 0;i < g->n_vertices;i++)

{

g->vertices[i].weight = 0;

g->vertices[i].trace_back = NULL;

g->vertices[i].heap_index = 0;

}

update_weight(g,&g->vertices[starting_vertex],&g->vertices[starting_vertex],0);

while((v = get_vertex_with_min_weight(g)) != NULL)

for(e = v->out_edges;e != NULL;e = e->next)

update_weight(g,v,&g->vertices[e->vertex_number],v->weight + e->weight);

}

The entire code can be found in the P13.tgz archive.

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 28 (305)

Shortest path (part 5, example)

The following figure presents the best paths from vertex 1 to all other vertices. The smallest weight of each path is

shown in blue near the destination vertex. Edges belonging to at least one best path are shown in red. Note that

they form a tree.

4

2

2

2

2

4

3

0

2

3

6

3

4

6

7

6

2 1

1

6

1

2

2

1

1

2

3

4

5

6

7

8

9

The progress of the algorithm is displayed on the table on the
right. Each stage of the algorithm has two phases. In the
first, one of the vertices with the smallest distance that has
not yet been selected (not blue) is selected; this is signaled
by a small circle placed between columns. In the second, the
distances of the paths that pass through the selected vertex
are updated (best current distances are presented in black,
discarded distances are presented in gray). The algorithm
terminates either when there are no more vertices to select or
when the destination vertex has been selected.

1 0 • 0 0 0 0 0 0 0 0 0

2 ∞ ∞,2• 2 2 2 2 2 2 2 2

3 ∞ ∞,4 4,3 • 3 3 3 3 3 3 3

4 ∞ ∞,6 6 6 6 6 6,8• 6 6 6

5 ∞ ∞ ∞,3 3,5 • 3 3 3 3 3 3

6 ∞ ∞ ∞ ∞,5 5,4 • 4 4 4 4 4

7 ∞ ∞ ∞ ∞ ∞ ∞,6• 6 6 6 6

8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞,8 8,7•7

9 ∞ ∞ ∞ ∞ ∞,7 7,6 6,9 6 • 6 6

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 29 (306)

Minimum spanning tree (part 1, Kruskal’s algorithm and example)

Problem: Given a weighted undirected connected graph, find the spanning tree with the smallest weight. (The

weight of a tree is the sum of the weights of its edges.)

Solution [Kruskal]: Sort the edges in increasing order. While the number of accepted edges is smaller than the

number of vertices minus one, get the next edge (start with the smallest). If its two endpoints belong to different

connected components, accept the edge (and update the connected components information using the union-find

data structure). Otherwise reject the edge.

It can be shown that this algorithm takes O
(
|E| log |E|

)
time to finish.

When the edge weights are distinct, the minimum spanning tree is unique. Otherwise, many spanning trees with the

same weight can exist.

4

6

2

2

2

4

3

1

1 12

2

1

2

2

1

2

3

4

5

6

7

8

9

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 30 (307)

Minimum spanning tree (part 2, Prim’s algorithm)

Solution [Prim]: Let V ′ be a set of vertices having initially only one vertex (chosen arbitrarily). Let E′ be the

set of edges that connect one vertex of V ′ to a vertex in the neighborhood of V ′. Repeat the following procedure

until E′ becomes empty. Select the edge of E′ with the smallest weight. That edge becomes part of the minimum

spanning tree. Add its arriving vertex to V ′.

It can be shown that this algorithm takes O
(
|E| log |V |

)
time to finish when the edge selection is done using a

priority queue (min-heap).

AED 2022/2023
Tomás Oliveira e Silva

Home P.10 JT.10I page 31 (308)

Graphs (exercises)

— P.10 —

AED 2022/2023
Tomás Oliveira e Silva

Home JT.10I P.10 page 1 (309)

Some topics on computational geometry
— T.11 —

Summary:

• Steiner trees

• Point location (grid, quad-tree, oct-tree)

• Convex hull, Delaunay triangulation, Voronoi dia-

gram (examples)

Recommended bibliography for this lecture:

• Computational Geometry. Algorithms and Applica-
tions, M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf, second edition, Springer, 2000.

• Computational Geometry in C, Joseph O’Rourke, second
edition, Cambridge University Press, 1998.

AED 2022/2023
Tomás Oliveira e Silva

Home P.11 JT.11 page 1 (310)

Steiner trees

Problem: Given a set of points in the plane, find an

interconnection tree with minimal total distance.

This is a very difficult problem (NP-hard).

(Can be generalized to more than two dimensions.)

Minimum spanning tree

Total length of 788.472

Euclidean minimum Steiner tree

Total length of 759.996

Rectilinear minimum Steiner tree

Total length of 840.000

AED 2022/2023
Tomás Oliveira e Silva

Home P.11 JT.11 page 2 (311)

Steiner trees (“large” example, Euclidean minimum Steiner tree)

(Example made with the help of the geosteiner program)

Minimum spanning tree total length of 3843.871 Euclidean minimum Steiner tree total length of 3717.030

AED 2022/2023
Tomás Oliveira e Silva

Home P.11 JT.11 page 3 (312)

Steiner trees (“large” example, Rectilinear minimum Steiner tree)

(Example made with the help of the geosteiner program)

Minimum spanning tree total length of 3843.871 Rectilinear minimum Steiner tree total length of 4233.000

AED 2022/2023
Tomás Oliveira e Silva

Home P.11 JT.11 page 4 (313)

Steiner trees (“large” example, Octilinear minimum Steiner tree)

(Example made with the help of the geosteiner program)

Minimum spanning tree total length of 3843.871 Octilinear minimum Steiner tree total length of 3847.034

AED 2022/2023
Tomás Oliveira e Silva

Home P.11 JT.11 page 5 (314)

Point location (part 1, problem formulation)

Problems: Given a set S of n points on a plane (or in 3-dimensional space) and another point p:

• find the point of S closer to p;

• find the k points of S closer to p; or

• find all points of S whose distance to p is smaller that d.

The obvious algorithm, trying all points of S, solves the first and third problems in O(n). By sorting all distances

to p the answer to the second problem can be obtained in O(n logn), irrespective of the value of k.

Is it possible to do better? After all, in the one-dimensional case a binary search solves the first problem in O(logn)

(this, of source, assumes that the points are already sorted). The answer is yes. The following slides present some

simple techniques that can be used to speed up point location problems.

This problem appears in many applications:

• visualization of the part of a map near a given location,

• location of the restaurant nearer to a given location,

• in a game, discovery is a given projectile is close enough to a target,

• and so on.

AED 2022/2023
Tomás Oliveira e Silva

Home P.11 JT.11 page 6 (315)

Point location (part 2, subdivision of space using a regular grid)

One way to speed up point location queries consists of subdividing the plane into a regular grid. Each grid cell keeps a

linked list of the points that belong to that cell. For example, suppose that it is known that the x coordinates of the

points satisfy xmin 6 x < xmax, and that the y coordinates satisfy ymin 6 y < ymax (note the strict inequality in

the upper bounds). Furthermore, suppose that our grid has W cells in the x direction and H cells in the y direction.

The width of a cell will then be w = (xmax− xmin)/W , and its height will be y = (xmax− ymin)/H . A point

with coordinates (x, y) will then belong to the cell with coordinates(⌊x− xmin

w

⌋
,
⌊y − ymin

h

⌋)
.

Locating the nearest point would then involve looking at the list of points of the cell where the query point lies, and

at the lists of nearby cells.

Assuming that the points are well distributed and that wh ≈ n, finding the nearest point takes, on average and like

a hash table, O(1) time.

In dynamic situations, where the coordinates of the points change over time (but stay within the bounds given above),

maintaining this data structure is easy: when the cell coordinates of a point change, one deletes the point from one

linked list and one inserts it in another linked list. (Doubly-linked lists are better for this!)

xmin xmax

ymin

ymax

(0,0) (1,0)

(0,1)

W cells︷ ︸︸ ︷H cells

AED 2022/2023
Tomás Oliveira e Silva

Home P.11 JT.11 page 7 (316)

Point location (part 3, subdivision of space using a quad-tree or oct-tree)

Another possibility consists of subdividing the space into smaller and smaller regions, in a tree-like manner, as

illustrated in the following figure for the two-dimensional case.

At each tree level one distributes the points that belong to a given tree branch (a rectangular region) into four

subbranches (2D) or into eight subbranches (3D). The subdivision process stops when there is only one point left, in

which case no further subdivision is necessary to disambiguate the points.

In two dimensions, the data structure implementing this idea is called a quad-tree. In three dimensions it is called

an oct-tree.

Finding the nearest point in a quad-tree or oct-tree is not as simple as it is was using a regular space subdivision.

Also, the data structure has trouble dealing with coincident points. It, however, adapts itself nicely to an arbitrary

distribution of points (without using an excessive amount of memory and using a number of tree levels that is usually

not too large).

AED 2022/2023
Tomás Oliveira e Silva

Home P.11 JT.11 page 8 (317)

Examples (convex hull, Delaunay triangulation, Voronoi diagram)

Convex hull

Can be computed in O(n logn) time

Delaunay triangulation

Can be computed in O(n logn) time

Voronoi diagram (points and line segments)Voronoi diagram (points)

Can be computed in O(n logn) time

AED 2022/2023
Tomás Oliveira e Silva

Home P.11 JT.11 page 9 (318)

Computational geometry (exercises)

— P.11 —

AED 2022/2023
Tomás Oliveira e Silva

Home JT.11 P.11 page 1 (319)

First assignment (2022/2023, this is the one you need to do, due 05-12-2022)
Speed run (part 1)

A road is subdivided into road segments of approximately the same length. Each road segment has a speed limit. The

speed is measured by the number of road segments a car is able to advance in a single “move.” In each move the car

can i) reduce its speed by one (brake), ii) maintain the speed (cruise), or iii) increase its speed by one (accelerate).

The car is placed at the first segment of the road with a speed of zero. It has to reach the last segment of the road

with a speed of one (at which point it can reduce the speed to zero and so, stop). The purpose of this assignment is

to determine the minimum number of moves required to reach the final position.

The car position, i.e., the road segment number, is stored in the integer variable position. Its final position is stored

in final_position, and its speed in speed. A car move consists in doing the following:

1. Choose its new_speed. It can be speed-1, speed, or speed+1. The new speed must be positive.

2. Advance to the new position: new_position=position+new_speed.

3. However, it can only do so if it never exceeds the speed limit, i.e., for i=0,1,...,new_speed, it must be true

that new_speed<=max_road_speed[position+i].

In the following example the road has 31 segments (i.e. final_position=30).

[0]

5
[1]

5
[2]

6
[3]

6
[4]

8
[5]

7
[6]

8
[7]

9
[8]

8
[9]

9
[10]

8
[11]

9
[12]

9
[13]

8
[14]

9
[15]

7
[16]

7
[17]

6
[18]

6
[19]

6
[20]

5
[21]

6
[22]

5
[23]

4
[24]

4
[25]

3
[26]

5
[27]

3
[28]

3
[29]

3
[30]

3

The optimal solution has 10 moves (the 11 car positions are shown in gray):

[0]

5
[1]

5
[2]

6
[3]

6
[4]

8
[5]

7
[6]

8
[7]

9
[8]

8
[9]

9
[10]

8
[11]

9
[12]

9
[13]

8
[14]

9
[15]

7
[16]

7
[17]

6
[18]

6
[19]

6
[20]

5
[21]

6
[22]

5
[23]

4
[24]

4
[25]

3
[26]

5
[27]

3
[28]

3
[29]

3
[30]

3

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 1 (320)

Speed run (part 2, what is given)

In the archive A01.tgz you will find the files:

� A01/makefile — this makefile can be used to compile the program.

� P02/elapsed_time.h — to declare and define the cpu_time function that is used to measure the time the

program takes to run.

� A01/make_custom_pdf.c — code to produce directly a custom PDF file. (This is your chance to study how a

PDF file is structured.) It is possible to produce uncompressed or compressed PDF files; just take a look at the

makefile to see how this can be done. Uncompressed PDF files are text files! Warning: on ubuntu, you may

need to install the development version of the zlib library:

sudo apt install zlib1g-dev

� A01/speed_run.c — the main code, where the max_road_speed array is initizalized, and where a correct but

slow solution of the problem is provided (look at the functions solution_1_recursion and solve_1).

You should study the entire contents of the speed_run.c file. In particular, you must study and understand how

the solution_1_recursion recursive function works, because improving it will be your main task.

The speed_run can take one command line argument. If it is -ex it generates and solves the example given in the

previous page. Otherwise, the argument should be a student number. It will be used to initialize the pseudo-random

number generator used by the program to produce perturbations of the maximum speed array data. In this way, each

student will have to solve a slighty different problem.

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 2 (321)

Speed run (part 3, what has to be done)

Proposed tasks:

� See how large the final position can be using a _time_limit_ of 3600.0 (one hour). This has to be done using

each one of the student numbers of the group as a (command line) input to the program. Record the execution

times as a function of the final position. Try to find a formula that gives a reasonably good estimate of the

execution time (as a function of the final position). For a final position of 800, estimate how long would the

program take to give an answer.

� As it would be great to be able to reach a final_position of 800, which is not possible using the given solution,

invent other solution methods. Do not change the solution_1_recursion and solve_1 functions. Instead,

create new ones. [Hint: it is possible to solve the problem with a final position of 800 in a few microseconds.]

Which of your methods is the fastest?

Consider solving the problem using dynamic programming (that will be explained later in this course). That is

not mandatory, but should be attempted by groups with very good students (or so they believe themselves to

be). A warning, though. The teachers will give no support regarding using dynamic programming at this early

stage. You will be on your own. Impress us!

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 3 (322)

Speed run (part 4, the written report)

The written report must have:

• A title page (front page) with the name of the course, the name of the report, date, the numbers and names of

the students, and an estimate of the percentage each student contributed to the project. The sum of percentages

should be 100%.

• A short introduction describing the problem.

• A small description of the methods used to find the solutions. This must also include a description of the solution

already provided. Explanations why a given solution is better (or worse) than some others should also be given.

• A description of the solutions found; this should include graphs of the execution time of the program as a function

of the size of the problem. Place in the report only a few of the PDF files generated by the program.

• Comments or attempts at explanations of the results found. This can be placed near where the results are

presented in the report.

• The source of any material adapted from the internet must be properly cited.

• An appendix with all the code. Use a small mono-spaced font such as courier or consolas.

• Deliverable (via elearning site): one PDF file. No archives!

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 4 (323)

First assignment (2021/2022)
Merkle-Hellman cryptosystem (part 1)

In 1978, Merkle and Hellman proposed an interesting way to cipher information, based on an NP-complete problem

(the knapsack problem). It turned out that this cipher is insecure. The techniques used to break it are outside the

scope of this course. Below, we describe only one simplification of the cipher, where the knapsack problem is replaced

by a subset-sum problem. (Hint: one of the techniques used to solve problem 2 of the homework of lesson P.02 may

be useful here). In this assignment you will attempt to solve small instances of this problem.

The main idea of the Merkle-Hellman cryptosystem is to construct a subset-sum problem, kept secret, that is trivial

to solve using a greedy algorithm, and then to disguise it as a hard to solve problem, that is published. It is thus a

public-key cryptosystem. The following information is kept secret:

� A super-increasing sequence W = (w1, w2, . . . , wn) of n positive integers. In a super-increasing sequence

we have wk >
∑k−1

i=1 wi for 2 6 k 6 n.

� A modulus m such that m >
∑n

i=1wi.

� A scrambling integer a such that gcd(a,m) = 1.

Let W ′ = (w′1, w
′
2, . . . , w

′
n), where w′i = (awi) mod m, for 1 6 i 6 n. Recall that a mod b denotes the

remainder of the division of a by b. The following information is published:

� The sequence P = (p1, . . . , pn), which is the sequence W ′ sorted in increasing order.

To cipher the n bits B = (b1, . . . , bn) compute and send C =
∑n

k=1 bkpk. Knowing W , m, and a, it is easy to

decode what was sent. Without that information, it is necessary to solve the hard subset-sum problem (see example

in the next page).

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 5 (324)

https://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
https://en.wikipedia.org/wiki/Subset_sum_problem

Merkle-Hellman cryptosystem (part 2, example)

The following example show the Merkle-Hellman cryptosystem in action.

� Secret data: W = (1, 3, 5, 12, 22, 47), m = 100, and a = 13.

� Intermediate data: W ′ = (13, 39, 65, 56, 86, 11).

� Published data: P = (11, 13, 39, 56, 65, 86). Note that 11 is associated to w6, 13 to w1, 39 to w2, 56

to w4, 65 to w3, and 86 to w5.

� Unencrypted message: B = (b1, . . . , b6) = (0, 0, 1, 1, 0, 1).

� Encrypted message: C′ = 0× 11 + 0× 13 + 1× 39 + 1× 56 + 0× 65 + 1× 86 = 181.

Knowing the secret information it is easy to decipher the message:

� Compute C = (C′a−1) mod m. Since (w′ia
−1) mod m = wi, this transforms the hard problem into the

easy problem. Because 13−1 mod 100 = 77 — this is easy to check: (13× 77) mod 100 = 1 — we get

C = (181× 77) mod 100 = 37.

� Now the problem is easy: which elements ofW sum to 37? 47 is clearly out, but 22 must be in. 37−22 = 15,

so 12 must also be in. 15− 12 = 3, so 3 is also in. So, 37 = 22 + 12 + 3.

� To finish decoding, observe that 22 = w5 is associated to 86 = p6, 12 = w4 is associated to 56 = p4, and

3 = w2 is associated to 39 = p3, and so the non-zero bits are b3, b4, and b6.

Of course, in your written assignment you will not be able to do this last part, because you will not be given the

secret information. You with have to solve the hard subset-sum problem.

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 6 (325)

Merkle-Hellman cryptosystem (part 3, what is given)

In the archive A01.tgz you will find the problem instances you need to solve. Each student will have her/his own

problem instances, stored in a .h file with the student’s number. For each value of n, 10 6 n 6 57, the .h file will

contain a p sequence and 20 sums obtained by summing some terms of that sequence. The goal is to find out, for

each sum, which terms were used to get the sum.

Please place your code in the subset sum.c file. Each group of students should solve as many problems as they

can, using the .h files corresponding to their student numbers — three students, three .h files! You can, and should,

delete the .h files that are of no interest to you (the files for the students not in your group).

Things have been set up to make this easy. For example, for a student with number 100000, the program can be

compiled using

cc -Wall -O2 -DSTUDENT_H_FILE=\"100000.h\" subset_sum_problem.c

so there is no need to hardwire the .h file name in the C file. As an alternative, you can edit the makefile, replacing

the .h file name in the line

STUDENT_H_FILE=000000.h

There exists a special .h file, named 000000.h. It contains a full set of problems. The solutions to these problems

are stored is comments after each sum; in each comment, the bits appear in the order b1, b2, . . . , bn. Use these

solutions to check the correctness of your own program.

If the Schroeppel and Shamir technique is successfully implemented by a group of students (see next slide), it becomes

feasible to break the 64-bit barrier, and to solve problem instances with somewhat larger values of n (up to 64). The

program will have to deal with integers of type unsigned int128. For those students, larger sets of problems

instances will be available upon request.

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 7 (326)

Merkle-Hellman cryptosystem (part 4, what has to be done)

Each group should try the following techniques to solve the subset-sum problems:

� Brute force, using a recursive function.

� Clever brute force (called branch and bound), using a recursive function that avoids further recursions when it can

be proved that with the current data no solution is possible because the partial sum is either too small or too large.

� Horowitz and Sahni technique (meet-in-the-middle technique). In this technique the p data is split in two nearly

equal parts, all possible subset sums of each of the two parts are stored in sorted order in two arrays, and, in a

single pass over these sorted arrays, one looks for the solution. In particular,

1. Let a be the first sorted array, with size na, and let b be the second sorted array, with size nb.

2. Let i the be a-array index and let j be the b-array index; i starts at 0 and j starts at nb − 1.

3. The goal is to find i and j such that ai + bj = s, where s is the desired sum. In each loop iteration of

the algorithm either the solution is found or either i is increased if ai + bj < s — that is the only way of

increasing the sum — or j is decreased if ai + bj > s — that is the only way of decreasing the sum.

4. If one of the indices goes out of bounds, no solution exists.

� Schroeppel and Shamir technique (meet-in-the-middle using less memory). This is similar to the Horowitz and

Sahni technique but the two arrays a and b are not kept in memory. Instead, the elements of each one are

generated on-the-fly using a min-heap (for the a array) and a max-heap (for the b array). The p data has to be

subdivided in four nearly equal parts. This is the more difficult part of the assignment, and should be attempted

only by good students. No further details are given here. You are on your own.

Dynamic programming techniques, which appear in numerous sites on the internet, are not feasible for almost all of

the problems in the .h files.

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 8 (327)

Merkle-Hellman cryptosystem (part 5, the written report)

The written report must have:

• A title page (front page) with the name of the course, the name of the report, date, the numbers and names of

the students, and an estimate of the percentage each student contributed to the project. The sum of percentages

should be 100%.

• A short introduction describing the problem; the source of any material adapted from the internet must be

properly cited.

• A small description of the methods used to find the solutions.

• A description of the solutions found; this should include graphs of the execution time of the program as a function

of the size of the problem.

• Comments or attempts at explanations of the results found. This can be placed near where the results are

presented in the report.

• An appendix with all the code and data (bit vectors) of all solutions. Use a small font.

• Deliverable: one PDF file. No archives, please!

Suggestion: to simplify placing the solutions in the report, make your program output them in a format that makes

the work of pasting them in the report easy. The same applies to the execution times (both for making tables to to

making graphs).

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 9 (328)

First assignment (2020/2021)
Generalized weighted job selection problem (part 1)

Given T programming tasks, each one with a starting date, an ending date, and a profit, and given P programmers,

the generalized weighted job selection problem asks for the best subset of programming tasks such that

• the sum of the profits of the programming tasks belonging to the subset is maximized,

• each programming task is done by a single programmer, and

• each programmer cannot work on more than one task at a time.

Under the rules given above a programmer cannot interrupt a programming task to do another programming task;

once she/he is committed to a programming task, she/he is busy until that task ends.

For example, consider the following case with T = 5 and P = 2 (this case can be generated by calling the

job_selection program with the command line parameters 2020 5 2 0):

task number starting date ending date profit

0 6 12 1097

1 10 23 2964

2 11 20 2048

3 17 26 2002

4 24 27 442

As each task can either be selected or not selected, there are 32 cases to consider. In this particular case, since

P = 2, three or more tasks cannot be done at the same time, so tasks 0, 1, and 2 cannot all be selected at the

same time, and the same happens with tasks 1, 2, and 3. It turns out that of the 32 cases only 26 are viable.

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 10 (329)

Generalized weighted job selection problem (part 2)

For the example of the previous slide the programming tasks are spread over time as shown in the following figure.

0 5 10 15 20 25 30

Task 0 (1097)

Task 1 (2964)

Task 2 (2048)

Task 3 (2002)

Task 4 (442)

task 4 task 3 task 2 task 1 task 0 viable total profit

no no no no no yes 0

no no no no yes yes 1097

no no no yes no yes 2964

no no no yes yes yes 4061

no no yes no no yes 2048

no no yes no yes yes 3145

no no yes yes no yes 5012

no no yes yes yes no 6109

no yes no no no yes 2002

no yes no no yes yes 3099

no yes no yes no yes 4966

no yes no yes yes yes 6063

no yes yes no no yes 4050

no yes yes no yes yes 5147

no yes yes yes no no 7014

no yes yes yes yes no 8111

task 4 task 3 task 2 task 1 task 0 viable total profit

yes no no no no yes 442

yes no no no yes yes 1539

yes no no yes no yes 3406

yes no no yes yes yes 4503

yes no yes no no yes 2490

yes no yes no yes yes 3587

yes no yes yes no yes 5454

yes no yes yes yes no 6551

yes yes no no no yes 2444

yes yes no no yes yes 3541

yes yes no yes no yes 5408

yes yes no yes yes yes 6505

yes yes yes no no yes 4492

yes yes yes no yes yes 5589

yes yes yes yes no no 7456

yes yes yes yes yes no 8553

In the best solution, shown below, tasks 0 and 3 are assigned to one programmer, tasks 1 and 4 are assigned to the

other programmer, and task 2 is left undone; the total profit is 6505.

0 5 10 15 20 25 30

Task 0 (1097) Task 3 (2002)

Task 1 (2964) Task 4 (442)

Task 2 (2048)

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 11 (330)

Generalized weighted job selection problem (part 3)

In the archive A01.tgz you will find code that generates the problem instances you need to solve. Please pay attention

to the comments placed at the beginning of the file job_selection.c. It contains very useful information about

optional things you should do in order to get better grades (it is better to do less optional things well that to do

everything that is optional in a sloppy manner).

The written report must have:

• A title page (front page) with the name of the course, the name of the report, date, the numbers and names of

the students, and an estimate of the percentage each student contributed to the project (the sum of percentages

should be 100%).

• A short introduction describing the problem; the source of any material adapted from the internet must be

properly cited.

• A small description of the method used to find the solutions.

• A description of the solutions found; this should include a graph of the execution time of the program as a

function of T and P .

• Comments or attempts at explanations of the results found (this can be placed near where the results are presented

in the report).

• An appendix with all the code (use a small font).

• Deliverable: one PDF file. No archives, please!

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 12 (331)

Generalized weighted job selection problem (part 4)

Test case (obtained by running ./job_selection 2020 20 4 0):

• The time to solve should be a few milliseconds or better.

• The total number of viable job selections must be 155510.

• The best (largest) total profit must be 36148. In its essence the solution is unique (see next slide).

� The programming task allocations should be as follows:

0 5 10 15 20 25 30 35 40 45 50

Task 1 (4741) Task 13 (251) Task 16 (3944) Task 19 (795)

Task 9 (3400)Task 3 (1548) Task 17 (4228)

Task 4 (8218)

Task 18 (1354)Task 6 (7669)

Task 0 (2886)

Task 2 (2220)

Task 5 (6188)

Task 7 (1483)

Task 8 (875)

Task 10 (3447)

Task 11 (2016)

Task 12 (2407)

Task 14 (3392)

Task 15 (2397)

� Disregarding the profits (just run ./job_selection 2020 20 4 1), it is possible to do 12 programming tasks.

There are 22 solutions. Here is one:

0 5 10 15 20 25 30 35 40 45 50

Task 2 Task 13 Task 16 Task 19

Task 9Task 3 Task 17

Task 15Task 7

Task 8 Task 10 Task 18

Task 0

Task 1

Task 4

Task 5

Task 6

Task 11

Task 12

Task 14

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 13 (332)

Generalized weighted job selection problem (part 5)

Another test case (obtained by running ./job_selection 2020 30 6 0):

• The time to solve should be a few seconds or better.

• The total number of viable job selections must be 208452244.

• The best (largest) total profit must be 50154. In its essence the solution is unique.

� The programming task allocations should be as follows:

0 5 10 15 20 25 30 35 40 45 50

Task 1 (437) Task 17 (4790)Task 6 (4849)

Task 2 (4749) Task 19 (1350) Task 25 (614) Task 28 (1509)

Task 16 (3103)Task 3 (3732)

Task 4 (9216)

Task 7 (8750)

Task 10 (1271) Task 15 (3036) Task 24 (764) Task 27 (1984)

Task 0 (5754)

Task 5 (984)

Task 8 (1243)

Task 9 (411)

Task 11 (2564)

Task 12 (1823)

Task 13 (1987)

Task 14 (2167)

Task 18 (1151)

Task 20 (1546)

Task 21 (2189)

Task 22 (1910)

Task 23 (1785)

Task 26 (992)

Task 29 (673)

� Disregarding the profits (just run ./job_selection 2020 30 6 1), it is possible to do 19 programming tasks.

There are 4446 solutions.

Hint: in your program give a different number to each programmer; it can be an index used to access an array. . .

Warning: the number of solutions and viable job selections reported here assume that when two or more programmers

are idle then the one with the smallest number gets the programming task.

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 14 (333)

First assignment (2019/2020)
The assignment problem (part 1)

In the assignment problem we will (attempt to) solve, there are n agents and n tasks. Assigning agent a to task t

has the cost Ca,t. The goal of the problem is to assign one agent to each task such that the total cost is minimized.

More precisely, let t(a) denote the task assigned to agent a. The total cost is the sum of the costs of all assignments,

and is given by

T =
∑

a
Ca,t(a).

The same task cannot be assigned twice, so if a1 6= a2 then t(a1) 6= t(a2).

It will be convenient to give numbers to both the agents and the tasks. In the C programming language, the

obvious choice is to number them 0, 1, . . . , n−1, because if so the numbers can be used as indices to access arrays

and matrices.

a\t 0 1 2

0 3 8 6

1 4 7 5

2 5 7 5

As an example with n = 3, let the costs be given by the table on the right hand side.

There are six possibilities:

1. t(0) = 0, t(1) = 1, t(2) = 2, with cost 3 + 7 + 5 = 15.

2. t(0) = 0, t(1) = 2, t(2) = 1, with cost 3 + 5 + 7 = 15.

3. t(0) = 1, t(1) = 0, t(2) = 2, with cost 8 + 4 + 5 = 17.

4. t(0) = 1, t(1) = 2, t(2) = 0, with cost 8 + 5 + 5 = 18.

5. t(0) = 2, t(1) = 0, t(2) = 1, with cost 6 + 4 + 7 = 17.

6. t(0) = 2, t(1) = 1, t(2) = 0, with cost 6 + 7 + 5 = 18.

The optimal cost is therefore 15.

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 15 (334)

The assignment problem (part 2)

Modify the code of the generate_all_permutations() function, located in the assignment.c file (get it from

the P05.tgz archive), so that instead of printing each permutation, the modified function solves the assignment

problem. Do some research to see what this important problem is all about.

Things to do (the more you do correctly, the better your grade will be):

• [Mandatory] At the top of the file assignment.c put the numbers and names of the students that performed

the work.

• [Mandatory] For each student number of the group, compute the best and worst costs for 1 6 n 6 14, and

record the time it took to compute each case.

• [Mandatory] Make an histogram of the cost of all possible assignments for n = 13 and n = 14.

• [Optional] For n = 13 and n = 14, compute the best and worst costs found using say, one million (the

more the better) random assignments; in the report, try to compare the results of this experiment with what the

histogram of the costs suggests should happen.

• [Optional] Try to make your program faster (search for branch-and-bound in the internet).

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 16 (335)

The assignment problem (part 3)

The written report must have:

• A title page (front page) with the name of the course, the name of the report, date, the numbers and names of

the students, and an estimate of the percentage each student contributed to the project (the sum of percentages

should be 100%).

• A short introduction describing the problem; the source of material adapted from the internet must be properly

cited.

• A small description of the method used to find the solutions.

• A description of the solutions found; this should include a graph of the execution time of the program as a

function of n, likewise for the best and worst costs.

• Comments or attempts at explanations of the results found (this can be placed near where the results are presented

in the report).

• An appendix with all the code (use a small font).

• Deliverable: one PDF file. No archives, please!

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 17 (336)

The assignment problem (part 4)

The following code can be used to generate a random permutation of the integers 0, 1, . . . , n− 1:
#include <math.h>

#include <assert.h>

#include <stdlib.h>

void random_permutation(int n,int t[n])

{

assert(n >= 1 && n <= 1000000);

for(int i = 0;i < n;i++)

t[i] = i;

for(int i = n - 1;i > 0;i--)

{

int j = (int)floor((double)(i + 1) * (double)random() / (1.0 + (double)RAND_MAX)); // range 0..i

assert(j >= 0 && j <= i);

int k = t[i];

t[i] = t[j];

t[j] = k;

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 18 (337)

The assignment problem (part 5)

Test cases:

� n = 3 and a cost matrix of

a\t 0 1 2

0 3 8 6

1 4 7 5

2 5 7 5

minimum cost of 15 for the assignment a[] = { 0 1,2 };

maximum cost of 18 for the assignment a[] = { 1,2,0 };

histogram: cost of 15, 2 times, cost of 17, 2 times, cost of 18, 2 times,

� n = 5 and a cost matrix of

a\t 0 1 2 3 4

0 27 27 25 41 24

1 28 26 47 38 21

2 22 48 26 14 24

3 32 31 9 41 36

4 24 34 30 35 45

minimum cost of 95 for the assignment a[] = { 1,4,3,2,0 };

maximum cost of 213 for the assignment a[] = { 3,2,1,0,4 }.

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 19 (338)

First assignment (2018/2019)
The traveling salesman problem (part 1)

Modify the code of the tsp_v1() function, located in the tsp.c file (get it from the A01.tgz archive), so that

instead of printing each permutation, the modified function solves the traveling salesman problem. Do some research

to understand what this problem is all about.

Things to do (the more you do correctly, the better your grade will be):

• [Mandatory] At the start of the main() function in the file tsp.c put your student number in the line

n_mec = 0; (for groups with two or more students, present results for each student number).

• [Mandatory] Compute the length of the best (shortest) tour for 3, 4, . . . , 15 cities.

• Compute the length of the worst (longest) tour for 3, 4, . . . , 15 cities.

• Measure the time it takes to solve the problem for the first k cities, for 3 6 k 6 15.

• Make an histogram of the length of all tours for 12 and 15 cities.

• Compute of the shortest and longest tour found using say, one million (the more the better) random permutations

of the order the cities are visited; in the report, try to compare the results of this probabilistic algorithm with

what the histogram of the lengths or the tours suggests should happen.

• For the final report, make separate plots of the best and worst tours, just to see what they look like. (There is

code to produce SVG files; use it!)

• At the start of the main() function in the file tsp.c change the line special = 0; to special = 1; and

redo all computations. For this case, the inter-city distances are asymmetric.

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 20 (339)

The traveling salesman problem (part 2)

The first written report (about the traveling salesman problem) must have:

• A title page (front page) with the name of the course, the name of the report, date, the names of the students,

and an estimate of the percentage each student contributed to the project (the sum of percentages should be

100%).

• A short introduction describing the problem; the source of material adapted from the internet must be properly

cited.

• A small description of the method used to find the solutions.

• A description of the solutions found; this should include a graph of the execution time of the program as a

function of the number of cities, likewise for the lengths of the shortest and longest tours, and figures of the

solutions.

• Comments or attempts at explanations of the results found (this can be placed near where the results are presented

in the report).

• An appendix with all the code (use a small font).

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 21 (340)

The traveling salesman problem (part 3)

Test data for n_mec = 0; and special = 0;

n minLength minPath maxLength maxPath

3 1160 0, 1, 2 1160 0, 1, 2

4 1179 0, 2, 1, 3 1417 0, 1, 2, 3

5 1400 0, 2, 1, 4, 3 2232 0, 1, 3, 2, 4

6 1409 0, 2, 1, 4, 3, 5 2385 0, 1, 5, 4, 2, 3

7 1437 0, 2, 5, 3, 6, 1, 4 2664 0, 3, 1, 5, 4, 2, 6

8 1440 0, 2, 7, 5, 3, 6, 1, 4 3022 0, 3, 2, 4, 5, 1, 7, 6

Test data for n_mec = 0; and special = 1;

n minLength minPath maxLength maxPath

3 996 0, 1, 2 1324 0, 2, 1

4 1036 0, 1, 3, 2 1529 0, 3, 2, 1

5 1213 0, 1, 4, 3, 2 2364 0, 3, 1, 2, 4

6 1250 0, 1, 4, 3, 5, 2 2691 0, 3, 2, 4, 5, 1

7 1305 0, 5, 6, 1, 4, 3, 2 2970 0, 6, 3, 2, 4, 5, 1

8 1307 0, 5, 3, 6, 1, 4, 7, 2 3325 0, 3, 7, 6, 2, 4, 5, 1

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 22 (341)

The traveling salesman problem (part 4)

The following code can be used to generate a random permutation of the integers 0, 1, . . . , n− 1:
#include <math.h>

#include <assert.h>

#include <stdlib.h>

void rand_perm(int n,int a[])

{

int i,j,k;

for(i = 0;i < n;i++)

a[i] = i;

for(i = n - 1;i > 0;i--)

{

j = (int)floor((double)(i + 1) * (double)rand() / (1.0 + (double)RAND_MAX)); // range 0..i

assert(j >= 0 && j <= i);

k = a[i];

a[i] = a[j];

a[j] = k;

}

}

AED 2022/2023
Tomás Oliveira e Silva

Home A.01I page 23 (342)

Second assignment (2022/2023, this is the one you need to do, due ??-??-2022)
Word ladder (part 1)

A word ladder is a sequence of words in which two adjacent words differ by one letter. For example, in English, it is

possible to go from head to tail in five steps: head→ heal→ teal→ tell→ tall→ tail. In Portuguese, we can go

from tudo to nada in four: tudo→ todo→ nodo→ nado→ nada.

The archive A02.tgz contains incomplete source code – file word_ladder.c – for the second assignment. In it you

will find

� comments near the beginning of the file with suggestions about what should be done,

� declarations of some data types (feel free to change them at will, but it is not necessary to do so),

� a very incomplete implementation of a hash table,

� a very incomplete implementation of code to deal with an undirected graph,

� a very incomplete implementation of code to implement the union-find data structure, and

� other miscellaneous code.

At the very least, you should present a complete functionally correct implementation of the hash table, including code

that dynamically resizes the hash table array when more stuff is added to the hash table. Discuss with your teacher

what else should be done. Use the comments at the beginning of the source code to guide you. If possible, give your

own suggestions for other things to do.

In the A02.tgz archive you will also find some text files with lists of Portuguese words. Use a small list when

developing the program, and the big one only at the end.

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 1 (343)

Word ladder (part 2, the written report)

The written report must have:

• A title page (front page) with the name of the course, the name of the report, date, the numbers and names of

the students, and an estimate of the percentage each student contributed to the project. The sum of percentages

should be 100%.

• A short introduction describing the problem.

• A short description of each function that was modified; this should include an explanation of what the function

does and how it does it.

• The source of any material adapted from the internet must be properly cited.

• An appendix with all the code. Use a small mono-spaced font such as courier or consolas.

• Deliverable (via elearning site): one PDF file. No archives!

The written report should also have (optional stuff, but if you want a high grade, you should do it):

• A list of interesting word ladders found by your program,

• Code that finds the diameter (largest smallest distance between pairs of vertices) of each connected component,

• Statistics about the data structures used by your program (ask your teacher if you don’s have any ideas about

this), and

• Confirmation that the program does not have memory leaks.

Of course, you may also do other things not described here. Surprise us!

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 2 (344)

Second assignment (2021/2022)
Multi-ordered trees (part 1)

Sometimes it is necessary to store and process records of data and to access them using one of several possible keys

(that is one of the things that databases do). In this second assignment we will consider records that contain the

following items of information about a person:

� first and last name,

� zip code, and

� telephone number.

We want, for example, to list these records in ascending order of one of these items. In order to do so, we will

construct ordered binary trees (one per item). There exist several ways to do this, but in this assignment we propose

one: the binary tree nodes, besides storing the data items, will also have three left and three right pointers (one per

data item), so that the three ordered binary trees coexist in the same data structure. In particular, the tree node will

be declared as follows.
typedef struct tree_node_s

{

char name[MAX_NAME_SIZE + 1]; // index 0 data item

char zip_code[MAX_ZIP_CODE_SIZE + 1]; // index 1 data item

char telephone_number[MAX_TELEPHONE_NUMBER_SIZE + 1]; // index 2 data item

struct tree_node_s *left[3]; // left pointers (one for each index) ---- left means smaller

struct tree_node_s *right[3]; // right pointers (one for each index) --- right means larger

}

tree_node_t;

It will be necessary to insert a given new item of information, already stored in a tree_node_t (but with the left

and right pointers still uninitialized), in three ordered binary trees (so, there will exist three roots).

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 3 (345)

Multi-ordered trees (part 2, useful code)

In the archive A02.tgz you will find a partial implementation of the assignment. In particular,

� the AED_2021_A02.h file contains declarations of things used by the entire project;

� the random_knuth.h file contains an implementation of a pseudo-random number generator, done by Prof.

Donald Knuth, that should produce the same results in GNU/Linux, Mac OS, and Windows;

� the random_number.c file uses Donald Knuth’s code to produce a 30-bit pseudo-random integer;

� the elapsed_time.c file contains code to measure execution time;

� the random_data.c file contains code to generate random names, zip codes, and telephone numbers; and, last

not not least,

� the multi_ordered_tree.c file contains a partial implementation of what needs to be done.

Of course, there is also a makefile, that you can use to compile the project.

Once you have a successful implementation you can use the program as follows:

Usage: ./multi_ordered_tree student_number number_of_persons [options ...]

Recognized options:

-list[N] # list the tree contents, sorted by key index N (the default is index 0)

The first argument is the student number, as that is used as the seed to the pseudo-random number generator. The

second argument is the number of “random” persons that are going to be generated, The program has to place them

all in the ordered binary trees, and then it has to measure some characteristics of the trees that were constructed. At

least the option -list should be implemented; it lists in sorted order the contents of one of the trees.

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 4 (346)

Multi-ordered trees (part 3, examples)

Normal run:

> ./solution_multi_ordered_tree 2021 1000000

Tree creation time (1000000 persons): 4.367e+00s

Tree search time (1000000 persons, index 0): 1.169e+00s

Tree search time (1000000 persons, index 1): 1.351e+00s

Tree search time (1000000 persons, index 2): 1.172e+00s

Tree depth for index 0: 54 (done in 6.089e-02s)

Tree depth for index 1: 55 (done in 6.341e-02s)

Tree depth for index 2: 48 (done in 6.303e-02s)

Runs to list the tree contents (you are free to format the output
in other ways, ... denotes the output of a normal run):

> ./solution_multi_ordered_tree 2021 3 -list0

...

List of persons:

Person #1

name --------------- Helen Reyes

zip code ----------- 22003 Annandale (Fairfax county)

telephone number --- 4008 868 655

Person #2

name --------------- Kareem Johnson

zip code ----------- 10463 Bronx (Bronx county)

telephone number --- 2000 034 151

Person #3

name --------------- Luke Hall

zip code ----------- 11215 Brooklyn (Kings county)

telephone number --- 7362 997 722

> ./solution_multi_ordered_tree 2021 3 -list1

...

List of persons:

Person #1

name --------------- Kareem Johnson

zip code ----------- 10463 Bronx (Bronx county)

telephone number --- 2000 034 151

Person #2

name --------------- Luke Hall

zip code ----------- 11215 Brooklyn (Kings county)

telephone number --- 7362 997 722

Person #3

name --------------- Helen Reyes

zip code ----------- 22003 Annandale (Fairfax county)

telephone number --- 4008 868 655

> ./solution_multi_ordered_tree 2021 3 -list2

...

List of persons:

Person #1

name --------------- Kareem Johnson

zip code ----------- 10463 Bronx (Bronx county)

telephone number --- 2000 034 151

Person #2

name --------------- Helen Reyes

zip code ----------- 22003 Annandale (Fairfax county)

telephone number --- 4008 868 655

Person #3

name --------------- Luke Hall

zip code ----------- 11215 Brooklyn (Kings county)

telephone number --- 7362 997 722

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 5 (347)

Multi-ordered trees (part 4, written report)

The written report must have:

• A title page (front page) with the name of the course, the name of the report, date, the numbers and names of

the students, and an estimate of the percentage each student contributed to the project (the sum of percentages

should be 100%).

• A very short introduction describing how you got your results.

• Tables and graphs with the execution times for how long it took to create the trees, and how long it took to

search all persons. This has to be done using each one of the trees, to see it there exist large differences in

execution times. For example, there exist only 500 zip codes. Does that influence much the execution times for

the construction and searches for the tree ordered by the zip codes?

• Tables and graphs of the maximum depth, and of any other tree characteristic you may choose do study, for each

of the three trees. You may wish to do a statistical study of this. To that end, use many consecutive student

numbers (say, from 999000 to 999999).

• Extra work (for a slightly better grade). Add a fourth field, for example, a social security number, and then work

with four trees.

• Extra work (for a significantly better grade). List, for example, all persons with a given zip code.

• Deliverable: one PDF file. No archives, please! Put in an appendix the entire contents of the

multi_ordered_tree.c file. If you made changes to any other file, place the changes you made also in

the appendix, but do not place there the entire file (that applies in particular to the random_data.c file; it is

BIG).

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 6 (348)

Second assignment (2020/2021)
Study of some sorting routines

In the archive A02.tgz you will find code that can be used to measure the execution time of some sorting routines.

Your task is to run the program and to comment on the results you got in your own personal computer. Optionally,

you may write code for one extra sorting routine (for example, the so-called comb sort); or, you can create a new

Shell sort routine that uses a different list of strides..

The written report must have:

• A title page (front page) with the name of the course, the name of the report, date, the numbers and names of

the students, and an estimate of the percentage each student contributed to the project (the sum of percentages

should be 100%).

• A very short introduction describing how you got your results.

• Tables with the execution times of each sorting routine (and respective graphs).

• Which sorting routine is the best? Consider small array sizes, large array sizes, and look also at the difficulty of

implementing each routine (number of lines of code?).

• If you decided to write new sorting routines, place their code in an appendix. (The code provided in A02.tgz

should not be placed in the appendix.)

• Deliverable: one PDF file. No archives, please!

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 7 (349)

Second assignment (2019/2020)
Word statistics (part 1)

Make a program that:

� counts the number of occurrences of each distinct word of a text file,

� records the location of the first and last occurrences of each distinct word,

� records the smallest, largest, and average distances between consecutive occurrences of the same distinct word.

Your program:

� must use a hash table (separate chaining),

� the hash table size should grow dynamically,

� each hash table entry should point to either a linked list or an ordered binary tree.

The written report must have:

• A title page (front page) with the name of the course, the name of the report, date, the numbers and names of

the students, and an estimate of the percentage each student contributed to the project (the sum of percentages

should be 100%).

• A very short introduction describing how you got your results.

• Tables with out results (and respective graphs).

• Deliverable: one PDF file. No archives, please!

The next two slides present useful code to read words from a file.

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 8 (350)

Word statistics (part 2, useful code I)

The following code may be used to open and close a text file.
typedef struct file_data

{

// public data

long word_pos; // zero-based

long word_num; // zero-based

char word[64];

// private data

FILE *fp;

long current_pos; // zero-based

}

file_data_t;

int open_text_file(char *file_name,file_data_t *fd)

{

fd->fp = fopen(file_name,"rb");

if(fd->fp == NULL)

return -1;

fd->word_pos = -1;

fd->word_num = -1;

fd->word[0] = '\0';

fd->current_pos = -1;

return 0;

}

void close_text_file(file_data_t *fd)

{

fclose(fd->fp);

fd->fp = NULL;

}

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 9 (351)

Word statistics (part 3, useful code II)

The following code may be used to fetch a word from a text file.
int read_word(file_data_t *fd)

{

int i,c;

// skip white spaces

do

{

c = fgetc(fd->fp);

if(c == EOF)

return -1;

fd->current_pos++;

}

while(c <= 32);

// record word

fd->word_pos = fd->current_pos;

fd->word_num++;

fd->word[0] = (char)c;

for(i = 1;i < (int)sizeof(fd->word) - 1;i++)

{

c = fgetc(fd->fp);

if(c == EOF)

break; // end of file

fd->current_pos++;

if(c <= 32)

break; // terminate word

fd->word[i] = (char)c;

}

fd->word[i] = '\0';

return 0;

}

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 10 (352)

Second assignment (2018/2019)
Random ordered trees (part 1)

The purpose of the second practical assignment is to study empirically random ordered binary trees. In particular, for

a tree with n nodes (holding n data items), what is

� the average maximum tree height,

� the average number of leaves,

� the average cost of searching for a item of information present in the tree (a hit), and

� the average cost of searching for a item of information that is not present in the tree (a miss),

and how to they grow with n? For example, for the tree on the right,

� the tree height is 4,

� the number of leaves is 2,

� searching for 4 has a cost of 1, searching for 2 or 8 has a cost of 2, searching

for 6 has a cost of 3, and searching for 5 has a cost of 4, and so the average

hit cost, assuming that all searched for numbers are equi-probable, is (1 +

2 + 2 + 3 + 4)/5 = 12/5,

� searching for a number smaller than 2, between 2 and 4, or larger than 8

has a cost of 3, searching for a number between 6 and 8 has a cost of 4,

and searching for a number between 4 and 5 or between 5 and 6 has a

cost of 5, and so the average miss cost, assuming again equi-probability, is

(3 + 3 + 3 + 4 + 5 + 5)/5 = 23/5.

4

2 8

6

5

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 11 (353)

Random ordered trees (part 2)

The archive A02.tgz contains code that may help you. In particular, if you choose to use it, it is only necessary

for modify/complete the parts marked by a comment starting with // TO DO, as most house-keeping details have

already been taken care of. Try to generate at least 100000 random trees for each n (1000000 is even better).

In your report you should, at least,

� present a table with your results (the provided program makes that easy),

� present your results is graphs,

� present fits, either of the form A logn+B or An+B for each curve,

� draw conclusions.

For a tree with n data items the program inserts, in random order, the numbers 1, 3, 5, . . . , 2n − 1 in the tree,

and so the distance between the numbers stored in it is constant. In that case it makes sense to assume equi-

probability when computing the average miss cost. The best reports will also explain how to modify the average miss

cost computation when the numbers 12, 32, 52, . . . , (2n − 1)2 are put (in random order) in the tree (instead of

the numbers 1, 3, 5, . . . , 2n − 1). Assume that you are looking for the numbers 0, 1, . . . , 2n(2n − 1) with

equi-probability; the misses are the numbers that are not squares of odd integers.

AED 2022/2023
Tomás Oliveira e Silva

Home JA.02I page 12 (354)

Third assignment (2020/2021)
Recursively decoding a non-instantaneous binary code

A binary code assigns to each symbol of an alphabet a specific sequence of bits (a binary codeword). For example,

let the alphabet consist of four symbols. We will name them A, B, C and D. One binary code for this alphabet is the

following:
symbol codeword

A 0

B 110

C 10

D 111
This particular code is a prefix-free code (no codeword is the prefix, i.e., is the beginning, of another codeword). A

code is said to be instantaneous if a symbol can be decoded as soon as the last bit of its codeword is received. (The

code given above is instantaneous.)

Let us now consider the following code:
symbol codeword

A 0

B 011

C 01

D 111
This code is uniquely decodable (it is our first code in reverse, so decoding from the end to the beginning is easy!),

but it is not instantaneous. If the beginning of an encoded message is 0111 it is not possible to decide without further

bits if the message starts with AD (encoded as 0 111) or with BD (encoded as 011 111).

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 1 (355)

Recursively decoding a non-instantaneous binary code (part 1, example)

A message was encoded using the following code
symbol codeword

A 0

B 011

C 01

D 111
and the encoded message is 011101. Let’s decode it one symbol at a time.

The message can begin with 3 of the 4 symbols of our alphabet: A (0 11101), B (011 101), and C (01 1101).

In the first case, the only possibility is for the next symbol to be D: (AD, 0 111 01). The second case is a dead end,

because there is no codeword that begins with 10. The third case is also a dead end, because there is no codeword

that begins with 110.

Continuing with the only remaining possibility, there are two cases to consider: either the next symbol is an A (ADA,

0 111 0 1), or it is a C (ADC, 0 111 01). In the second case we have decoded all bits of the encoded message, so this

is the solution.

Nonetheless, let us continue to explore the first case. This leads to another dead end because the only bit not yet

decoded, a 1, is not a valid codeword.

Summary (can you imagine a recursive function capable of doing this?):

011101

A

B

C

0 11101

011 101

01 1101

D

(dead end)

(dead end)

0 111 01
A

C
0 111 0 1

0 111 01

(dead end)

(this is it!)

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 2 (356)

Recursively decoding a non-instantaneous binary code (part 2, support code)

The archive A03.tgz contains code that you need to complete. In particular, it can generate a random code and a

random message, and it can encode it. You only need to decode the encoded message. The following global variables

may be useful:
// GIVEN

// _c_ _c_->data[i].codeword is the codeword for symbol number i

// _original_message_ the original unencoded message

// _original_message_size_ the size of the original message

// _encoded_message_ the encoded message

// _max_decoded_message_size_ ... the maximum size of the decoded message

// FOR YOU TO UPDATE

// _decoded_message_ the decoded message

// _number_of_calls_ the number of calls made to the recursive_decoder function

// _number_of_solutions_ the number of solutions (at the end it should be 1)

// _max_extra_symbols_ the maximum number of wrong decoded symbols until reaching a dead end

The recursive_decoder is the only function you need to complete. Its arguments are the following:
// encoded_idx _encoded_message_ array index of the next bit to be considered

// decoded_idx _decoded_message_ array index where the next decoded symbol will be placed

// good_decoded_size ... number of correct decoded symbols

For the example of the last slide we would get
encoded data 011101 0 11101 0 111 01 0 111 0 1 0 111 01 011 101 01 1101

encoded idx 0 1 4 5 6 3 2

decoded idx 0 1 2 3 3 1 1

good decoded size 0 1 2 2 3 0 0

decoded data A AD ADA ADC B C

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 3 (357)

Recursively decoding a non-instantaneous binary code (part 3, report)

The written report should have:

• A title page (front page) with the name of the course, the name of the report, date, the numbers and names of

the students, and an estimate of the percentage each student contributed to the project (the sum of percentages

should be 100%).

• Let n be the number of alphabet symbols in a code. For n = 3, 4, . . . , 100 (or more!) compute the average

number of function calls to the recursive_decoder per message symbol and the maximum number of wrong

decoded symbols (output of ./A03 -x n),

• Make graphs of the results you got.

• Can you estimate how these functions appear to grow?

• [Optional] Suppose you want to decode in real-time, i.e., decode the message as its encoded bits come in. What is

the maximum number of possibilities you need to consider at the same time? Modify the recursive_decoder

function to answer this question.

• [Optional, it may be a bit difficult] Decode the message in “real time” (a variable time lag is unavoidable).

• Deliverable: one PDF file. No archives, please!

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 4 (358)

Third assignment (2018/2019)
Huffman encoder and decoder

Summary:

• Huffman code

• Huffman encoder

• Huffman decoder

• Final remarks

Huffman code

A binary Huffman code assigns to each alphabet symbol Si, which is assumed to occur in a data source with probability

pi, a codeword Ci composed by Ni bits. It is a variable-length code.

The Huffman code selects codewords so that the average codeword length
∑

i piNi is as small as possible. This is

achieved by assigning codewords with more bits to symbols with low probabilities. (The exact way this can be done

is described in the following slides.) The Huffman code is not unique.

Let H = −
∑

i pi log2 pi be the entropy of the alphabet (log2 x is the base-2 logarithm of x). It is known that

the average codeword length of a binary Huffman code cannot is smaller than H and that it cannot be larger than

or equal to H + 1. Furthermore, no other code with codewords with an integer number of bits can be better than

a Huffman code.

For more information, consult section 2.8 of

• Data Compression, The Complete Reference, David Solomon, fourth edition, Springer, 2007.

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 5 (359)

Huffman encoder (part 1, code construction)

A binary Huffman code for n symbols is constructed in the following way.

• The two symbols with smallest probabilities are replaced by a virtual symbol that aglomerates the two.

• The probability of the virtual symbol is the sum of the probabilities of the two symbols.

• The codeword of the two symbols is constructed by appending 0 and 1 to the codeword of the virtual symbol.

• The problem is thus reduced to constructing a binary Huffman code for n− 1 symbols.

• When there is only one symbol there is nothing more to do: the codeword of the single symbol has 0 bits.

In order to do this efficiently, it is necessary to

• identify the two symbols with smallest probabilities; that will be done using a min-heap,

• keep track of the symbols that were merged; that will be done using a binary tree,

• after the construction of the so-called Huffman tree is finished, it is necessary to assign codewords to the symbols.

In our case, we also need to estimate the probabilities of each symbol, by counting the number of times they occur

in the data source (a file). In order to do this efficiently, one possibility is to

• use a hash table, in which the key is the symbol and the value is a counter of the number of times it occurs.

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 6 (360)

Huffman encoder (part 2, data structure)

The following C data structure will allow us to do all that is necessary. (In an object-oriented programming language

with an inheritance mechanism, things could be done in a different way.)
typedef struct node

{

//

// data stored in the node (symbol, symbol size (number of bytes), and number of occurrences

//

char symbol[MAX_SYMBOL_SIZE]; // the symbol (a word or a group of characters of other type, NOT terminated by '\0')

int symbol_size; // number of bytes stored in symbol[]

int count; // number of occurrences of the symbol

//

// pointers

//

struct node *next; // for a linked list (hash table with chaining)

struct node *left; // for the Huffman binary tree

struct node *right; // for the Huffman binary tree

//

// the Huffman code

//

uint64_t code; // 64 bit unsigned integer

int code_bits;

}

node;

It has fields needed by the nodes of the hash table (used for counting the number of times each symbol appears),

and fields needed by the binary tree (used to construct the Huffman code). The min-heap is to be organized by the

value of the count field. Note that the min-heap should store pointers to the nodes.

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 7 (361)

Huffman encoder (part 3, Huffman tree construction example)

The following figure exemplifies how the Huffman tree is constructed. Nodes with a gray background are the ones

currently stored in the min-heap.

stage 1

symbol=A
count=8

symbol=C
count=3

symbol=G
count=7

symbol=T
count=12

stage 2 no symbol
count=10

symbol=A
count=8

symbol=C
count=3

symbol=G
count=7

symbol=T
count=12

stage 3

no symbol
count=18

no symbol
count=10

symbol=A
count=8

symbol=C
count=3

symbol=G
count=7

symbol=T
count=12

stage 4 no symbol
count=30

no symbol
count=18

no symbol
count=10

symbol=A
count=8

symbol=C
count=3

symbol=G
count=7

symbol=T
count=12

To pass from one stage to the next a new node is created, its left and right pointers are initialized with nodes retrieved

from the min-heap, and the new node is put back in the min-heap.

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 8 (362)

Huffman encoder (part 4, Huffman code construction example)

Given the Huffman tree, the following figure exemplifies how the Huffman code is constructed. Movement to the

left corresponds to appending 0 to the code and movement to the right corresponds to appending 1 to the code (in

binary!). Constants starting with 0b are expressed in binary (the gcc compiler accepts them).

count=30
code=

code bits=0

count=18
code=0b0

code bits=1

count=10
code=0b01
code bits=2

count=8
code=0b00
code bits=2

count=3
code=0b010
code bits=3

count=7
code=0b011
code bits=3

count=12
code=0b1

code bits=1

As expected, symbols with small counts get long codes, and symbols with large counts get short codes.

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 9 (363)

Huffman decoder (decoding example)

Given the Huffman tree, to decode a stream of bits one starts at the root of the tree and one moves left of right

according to the bit received (0 for left and 1 for right). When a leaf is reached the corresponding symbol is written

to the output stream and one returns to the root of the tree.

For example, for the following Huffman tree, the bit stream 000110101 is split into 00_011_010_1 (an underscore

denotes a return to the root node), which is decoded as AGCT.

no symbol
code=

code bits=0

0 1

no symbol
code=0b0

code bits=1

0 1

no symbol
code=0b01
code bits=2

0 1

symbol=A
code=0b00
code bits=2

symbol=C
code=0b010
code bits=3

symbol=G
code=0b011
code bits=3

symbol=T
code=0b1

code bits=1

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 10 (364)

Huffman encoder and decoder (final remarks)

An incomplete implementation of the entire code can be found in the file Huffman.c; three dots (...) mark the

places where code has to be completed.

It is necessary to encode the entire Huffman tree (the function encode_Huffman_node does this recursively). It has

to match the code of the decode_Huffman_node function, which is provided in full.

In the written report it is necessary to explain (at the very least) how the functions expand_binary_code,

make_Huffman_tree, decode_Huffman_node, and encode work, and why a special symbol was used to denote

the end of encoded data.

In the written report it is necessary to compare the compression capabilities of the Huffman encoder with other

compression programs (for example, gzip, bzip2, lzma and xz). Compress at least the file SherlockHolmes.txt.

Also, experiment with other ways of splitting the input byte stream into symbols.

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 11 (365)

Third assignment (2017/2018)
Connectivity using union-find

Two regions are separated by a W ×H grid made of squares (W = 20, H = 10). Each square of the grid may

be either white or black. Initially, all squares are black. Black squares, chosen at random, are then changed into white

ones. On average, how many black squares need to be changed into white ones until there is a path made entirely of

white squares between the two regions?

Too easy? Then experiment with other grid sizes.

Suggestions: There is a simple union-find example in the P10.tgz archive. Strip it of all graph-related stuff (keep

only the union-find stuff). When a black square is turned into white do an union with all its white neighbors (the two

regions are initially white). Stop when the two regions have the same representative.

︸ ︷︷ ︸
W squares

H squares

AED 2022/2023
Tomás Oliveira e Silva

Home JA.03 page 12 (366)

