From 08833212918a1534d6a85a0223f6f27fdac46558 Mon Sep 17 00:00:00 2001 From: TiagoRG <35657250+TiagoRG@users.noreply.github.com> Date: Thu, 16 Mar 2023 14:48:27 +0000 Subject: [PATCH] [MD] logica-1a-ordem added (super incomplete tho :skull:) --- .../classes/logica-1a-ordem/src/main.bib | 3 + .../classes/logica-1a-ordem/src/main.tex | 291 ++++++++++++++++++ .../classes/logica-1a-ordem/src/ua.pdf | Bin 0 -> 2082 bytes .../md/apontamentos/pdf/logica-1a-ordem.pdf | Bin 0 -> 171848 bytes .../md/apontamentos/template/src/main.tex | 230 +------------- 5 files changed, 295 insertions(+), 229 deletions(-) create mode 100644 1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/main.bib create mode 100644 1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/main.tex create mode 100755 1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/ua.pdf create mode 100644 1ano/2semestre/md/apontamentos/pdf/logica-1a-ordem.pdf diff --git a/1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/main.bib b/1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/main.bib new file mode 100644 index 0000000..330cf1a --- /dev/null +++ b/1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/main.bib @@ -0,0 +1,3 @@ +%! Author = tiagorg +%! Date = 31/01/2023 + diff --git a/1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/main.tex b/1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/main.tex new file mode 100644 index 0000000..7efc4f7 --- /dev/null +++ b/1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/main.tex @@ -0,0 +1,291 @@ +%! Author = tiagorg +%! Date = 31/01/2023 +\documentclass[11pt]{report} + +\usepackage{amsmath} +\usepackage[T1]{fontenc} % Fontes T1 +\usepackage[utf8]{inputenc} % Input UTF8 +\usepackage[backend=biber, style=ieee]{biblatex} % para usar bibliografia +\usepackage{csquotes} +\usepackage[portuguese]{babel} %Usar língua portuguesa +\usepackage{blindtext} % Gerar texto automaticamente +\usepackage{hyperref} % para autoref +\usepackage{graphicx} +\usepackage{indentfirst} +\usepackage[printonlyused]{acronym} +\usepackage{color} + +\begin{document} +\def\titulo{Matemática Discreta} +\def\autores{Tiago Garcia} +\def\autorescontactos{tiago.rgarcia@ua.pt} +\def\empresa{Universidade de Aveiro} +\def\logotipo{ua.pdf} + +% +\def\tema{Lógica de 1ª Ordem} +% + +\begin{titlepage} +\begin{center} +\vspace*{50mm} +{\Huge\textbf{\titulo}}\\ +\vspace{10mm} +{\Large \empresa}\\ +\vspace{10mm} +{\LARGE \autores}\\ +\vspace{30mm} +\begin{figure}[h] + \center + \includegraphics{ua}\label{fig:ua-title} +\end{figure} +\vspace{30mm} +\end{center} +\end{titlepage} +\title{ +{\LARGE\textbf{\titulo} }\\\\ +{\Large \aula\\ \empresa} +} +\author{ + \href{https://github.com/TiagoRG}{\autores} \\ + \href{mailto:tiago.rgarcia@ua.pt}{\autorescontactos} +} +\date{\today} +\maketitle +\pagenumbering{arabic} +\clearpage + + % Content + + \chapter*{Consequências Semânticas} + \section*{Teorema} + Uma fórmula $\Psi$ é consequência lógica (ou semântica) das fórmulas $\psi_1, \psi_2, \ldots, \psi_n$ se e só se $(\psi_1 \wedge \psi_2 \wedge \ldots \wedge \psi_n) \rightarrow \Psi$ é uma tautologia (fórmula válida). + \subsection*{Notação} + $ \psi_1, \ldots, \psi_n \models \Psi $\\ + $\Psi$ é consequência lógica (ou semântica) de $\psi_1, \ldots, \psi_n$\\ + \par $\psi_1, \ldots, \psi_n \vdash \Psi$ existe uma prova de $\Psi$ a partir de $\psi_1, \ldots, \psi_n$\\ + A prova recorre a regras de dedução designadas por regras de inferência, e a tautologias conhecidas. + + \section*{Teorema} + $\psi_1, \ldots, \psi_n \models \Psi$\\ + ($\Psi$ é consequẽncia lógica de $\psi_1, \ldots, \psi_n$) se e só se o conjunto ${{\psi_1, \ldots, \psi_n, \neg\Psi}}$ é inconsistente, isto é, não existe uma interpretação para a qual todas as fórmulas do conjunto tomam valor 1. + \par Para verificar se este conjunto de fórmulas é inconsistente usamos uma nova regra designada por resolução:\\\\ + $ \frac{\psi \rightarrow \theta~~~\Psi\vee\psi}{\theta\vee\psi} res $\\Indicam que aplicámos a regra/método da resolução. + \subsection*{Casos particulares} + \begin{enumerate} + \item{Se $ \theta \equiv \bot $ obtemos\\ + $\frac{\Psi \rightarrow \bot~~~\Psi\vee\psi}{\bot\vee\psi}$\\ + simplificando como: $\bot\vee\psi\equiv\psi~~$ e $~~\Psi\rightarrow\bot\equiv\ned\Psi\vee\bot\equiv\ned\Psi$ + \par Para este caso particular a regra da resolução é:\\ + $\frac{\neg\Psi~~~\Psi\vee\psi}{\psi} res ~~ \rightarrow \neg\Psi, \Psi $ são lineares complementares. + } + \item { + Se $ \theta\equiv\bot~~~e~~~\psi\equiv\bot $ (este é um caso particular do caso 1.) + \par Se $\psi\equiv\bot$ então $\Psi\vee\psi\equiv\Psi\vee\bot\equiv\Psi$\\ + Substituindo no caso particular da regra de resolução obtida em 1. tem-se\\ + $ \frac{\neg\Psi~~~\Psi}{\bot} res $ + } + \end{enumerate} + + \chapter*{Lógica Proposicional} + \section*{Definição} + \subsection*{Simbolos} + Variáveis proposicionais: $p, q, \Psi, \psi, \ldots$\\ + Constantes: $\bot e \top$ + Conetivos lógicos: $\wedge, \vee, \rightarrow, \leftrightarrow, \neg, \equiv$ + \subsection*{Regras de construção} + \begin{enumerate} + \item{Se $\psi$ é uma fórmula proposicional então $\neg\neg\psi$ é uma fórmula proposicional.} + \item{Se $\psi$ e $\theta$ são fórmulas proposicionais então $\psi\wedge\theta$ é uma fórmula proposicional.} + \item{Se $\psi$ e $\theta$ são fórmulas proposicionais então $\psi\vee\theta$ é uma fórmula proposicional.} + \item{Se $\psi$ e $\theta$ são fórmulas proposicionais então $\psi\rightarrow\theta$ é uma fórmula proposicional.} + \item{Se $\psi$ e $\theta$ são fórmulas proposicionais então $\psi\leftrightarrow\theta$ é uma fórmula proposicional.} + \end{enumerate} + + \section*{Dedução na lógica proposicional} + \begin{itemize} + \item {Verificar se uma fórmula é consequência lógica de um conjunto finito de fórmulas.\\ + $\psi_1, \ldots, \psi_n \models \Psi$ + } + \item {Vimos que a consequência lógica é válida se e só se a implicação\\ + $\psi_1 \wedge \psi_2 \wedge \ldots \wedge \psi_n \rightarrow \Psi$ é uma tautologia. + } + \end{itemize} + + \subsection*{Para verificar se uma consequência lógica é válida:} + \begin{enumerate} + \item Verificar se a implicação associada é uma tautologia. + \item Verificar se é possível obter (também são usados os termos deduzir, derivar, entre outros) $\Psi$ a partir de $\psi_1, \ldots, \psi_n$, recorrendo a regras de inferência e tautologias conhecidas (propriedades dos conetivos lógicos).\\ (através de uma sequência de deduções em que aplicamos as regras de inferências e tautologias), diz-se que existe uma prova de $\Psi$ a partir de $\psi_1, \ldots, \psi_n$ e escreve-se $\psi_1, \ldots, \psi_n \vdash \Psi$. + \item Aplicar a regra de resolução - Método de resolução. + \end{enumerate} + \subsubsection*{Método de resolução} + A consequência lógica $\psi_1, \ldots, \psi_n \models, \Psi$ é válida se e só se o conjunto de fórmulas {$\psi_1, \ldots, \psi_n, \neg\Psi$} é inconsistente, ou seja, este conjunto contém $\bot$ ou é possível deduzir $\bot$ a partir deste conjunto de fórmulas, isto é, existe uma prova de $\bot$ a partir de $\psi_1,\ldots,\psi_n,\neg\Psi$. + + \chapter*{Lógica de 1ª ordem} + \section*{Definição} { + Exemplo de uma fórmula da lógica proposicional:\\ + $(p \wedge q) \rightarrow r $\\ + Para traduzir frases do tipo:\\ + i) \color{red} todos \color{black} os gatos têm garras.\\ + ii) \color{red} alguns \color{black} alunos de MD têm 20.\\ + \par Passamos da lógica proposicional para a lógica de 1ª ordem (esta última engloba a outra). + } + \section*{Linguagem da lógica de 1ª ordem} { + \subsection*{Alfabeto} { + \begin{enumerate} + \item Variáveis: x, y, z, \ldots; + \item Conetivos lógicos da lógica proposicional: $\wedge, \vee, \rightarrow, \leftrightarrow, \neg, \equiv$; + \item Constantes da lógica proposicional: $\bot e \top$; + \item Os quantificadores $\forall~e~\exists$; + \item O símbolo de igualdade: =; + \item Símbolos de constantes; + \item Símbolos de funções com aridade $n \in N$ (isto é, com $n$ argumentos); + \item Símbolos de predicados. + \end{enumerate} + } + \subsection*{Termo} { + \begin{enumerate} + \item Cada variável e cada símbolo de constante é um termo; + \item { Se f é símbolo de função com aridade $n$ e $t_1, \ldots, t_n$ são termos então $f(t_1, \ldots, t_n)$ é um termo.\\\\ + Exemplo: { + \begin{itemize} + \item Variáveis: $x, y, z$; + \item Constantes: $a = 1$, $b = $ Maria, $c = $ Gato tareco; + \item Funções: pai(Maria), onde\\ Pai: $P\rightarrow P$, onde $P$ é o conjunto das pessoas. + \item Predicado: $par(x)="x$ é par\("\), $D=N$\\ $par(2)=1,~~par(3)=0$, etc. + \end{itemize} + Como é que se constroem as fórmulas da lógica de 1.ª ordem?\\ + Definição (recursiva) de fórmula: + \begin{itemize} + \item $P(t_1, \ldots, t_n)$ é uma fórmla, considerando $P$ um simbolo de predicado e $t_1,\ldots,t_n$ termos. + \item Se $\psi$ e $\Psi$ sao fórmulas então:\\ $\psi \wedge \Psi$, $\psi \vee \Psi$, $\psi \rightarrow \Psi$, $\psi \leftrightarrow \Psi$, $\neg\psi$, $\bot$ e $\top$ são fórmulas. + \item Se $\psi$ é uma fórmula e $x$ é uma variável então $\forall x \psi$ e $\exists x \psi$ também são fórmulas. + \item Se $t_1$ e $t_2$ são termos então $t_1 = t_2$ é uma fórmula. + \end{itemize} + } + } + \end{enumerate} + } + \subsection*{Átomo} { + Na lógica proposicional, os átomos são as proposições atómicas (ex: $p =$ "chove", $q = $ "vou à aula de MD")\\ + \par Os átomos da lógica de 1ª ordem são: + \begin{enumerate} + \item $\bot, \top$ + \item $t_1=t_2$, com $t_1$ e $t_2$ termos + \item $P(t_1,\ldots,t_n)$, onde $t_1,\ldots,t_n$ são termos e $P$ é um simbolo de predicado. + \end{enumerate} + \subsubsection*{Exemplo} { + Consideremos os espaços vetoriais estudados na ALGA.\\ + O alfabeto inclui: + \begin{itemize} + \item O símbolo de constante o que representa o elemento nulo dos espaço vetorial + \item Símbolos de funções + \begin{enumerate} + \item Para cada $\alpha \in R$, o símbolo de funções\\ $\alpha \cdot \_$\\ que tem aridade 1 correspondente à multiplicação escalar. + \item O símbolo de função + com aridade 2, que corresponde à adição de elementos do espaço vetorial. + \end{enumerate} + \end{itemize} + } + \subsubsection*{Exemplos} { + Converta as seguintes afirmações para linguagem simbólica da lógica de 1ª ordem: + \begin{enumerate} + \item{ \color{red}Todos \color{black} os gatos têm garras.\\ + \color{red} $\forall x$ \color{black} [$g(x) \rightarrow t(x)$]\\ + \color{red} Universo: $U$ = conjunto dos animais. + } + \item{ \color{red} Alguns \color{black} alunos de MD têm 20.\\ + \color{red} $\exists x$ \color{black} ($MD(x) \wedge V(x)$)\\ + MD(x) = "x é aluno de MD"\\ + V(x) = "x tem 20" + \color{red} Universo: $U$ = alunos da UA em 22/23 + } + \end{enumerate} + } + } + } + + \section*{Folha 1} + \subsection*{Exercício 2.} + \subsubsection*{c)} + \color{red} Todos \color{black} os insetos são mais leves do que \color{red} algum \color{black} mamífero.~~~~~\color{red} $\forall$ $\exists$\\ + \color{black} Predicados:\\ + $I(x)$ = ``x é um inseto``\\ + $L(y,z)$ = ``y é mais leve do que z``\\ + $M(w)$ = ``w é um mamífero``\\ + \par $\forall x \left(I(x) \rightarrow \exists y \left( M(y) \wedge L(x, y) \right) \right)$ + \par Obs: Alcance de cada quantificador:\\ + \begin{itemize} + \item Ocorrência de x ligada: $I(x)$ + \item Alcance de $\forall x$: $\left(I(x) \rightarrow \exists y \left( M(y) \wedge L(x, y \right) \right)$ + \item Ocorrências de y ligadas: $M(y)$ e $L(x, y)$ + \item Alcance de $\exists y$: $\left( M(y) \wedge L(x, y \right)$ + \end{itemize} + + + \chapter*{Fórmula fechada} { + \section*{Definição} { + Fórmula que não tem variáveis com occorrências livres. + \subsection*{Exemplo} { + $\forall x~\exists y~(P(x)~\rightarrow~R(x,y))$ é uma fórmula fechada. + \par $\exists y~((\forall x~P(x))~\wedge~R(x,y))$, esta fórmula não é uma fórmula fechada. + } + \subsection*{Negação de fórmula com quantificadores} { + \begin{enumerate} + \item $\neg (\forall x~\psi)~\equiv~\exists x~\neg \psi$. + \item $\neg (\exists x~\psi)~\equiv~\forall x~\neg \psi$. + \end{enumerate} + $\psi$ - parte da fórmula que está sob o quantificador. + } + } + \section*{Introdução das fórmulas da lógica de 1ª ordem} { + \subsection*{Definição} { + \begin{itemize} + \item Estrututa; + \item Valoração,~~~V:$var~\rightarrow~D$, onde $D$ é o conjunto das variáveis. + \end{itemize} + O conceito de valoração pode ser entendido por forma a podermos considerar a valoração de um termo.\\ + $V(a) = a$, se $a$ é uma constante $V(f(t_1,\ldots,t_n)) = f^M(V(t_1),\ldots,V(t_n))$. + \textbf{Obs:} Frequentemente denotamos o símbolo de função $f$ e a função correspondente na estrutura $f^M$, pela mesma letra. + } + \subsection*{Exemplo dos slides} { + $V(M(A, x)) = M^M(V(A), V(x)) = M(A^M, 2) = M(1,2) = |1-2| = |-1| = 1$,~~~~~~$V(A) = A$ porque $A$ é uma constante. + } + } + \section*{Interpretação de fórmulas} { + \subsection*{Exemplo de interpretação de fórmulas (ver slides)} { + \subsubsection*{i)} { + Mostre que $R(x, A)$ não é válida na interpretação $(M,V)$\\ + \par Note-se que $\neg (M,V)\models R(x,A)$ se e só se $(M,V) \models \neg R(x,A)$ ($\neg R(x,A)$ é válida na interpretação $(M,V)$)\\ + \par $V(\neg R(x,A))\equiv\neg R(V(x),V(A))\equiv\neg R(2, A^M)\equiv\neg R(2, 1)\\\equiv\neg(2 < 1)\equiv\neg\bot\equiv\top $\\Logo, $\neg R(x, A)$ é valida na interpretação $(M,V)$, isto é, $(M,V)\models\neg R(x, A)$\\ + Isto é equivalente a afirmar que $R(x,A)$ não é válida nesta interpretação. + } + } + } + } + \chapter*{Forma normal de Skolem} { + \section*{Definição} { + Uma fórmula $\phi$ é dita em forma normal de Skolem se $\phi$ é uma fórmula na forma normal conjuntiva e não contém nenhum quantificador universal. + } + \section*{Exemplo} { + \subsection*{1)} { + $\forall x~P(x, f(x))\wedge\neg R(x) $, onde $f$ é uma função e $R$ e $P$ são predicados.\\ + } + \subsection*{2)} { + $\forall x~\forall y~(P(x, f(x)) \wedge (\neg R(x)~\vee~P(x,y)))$ + \subsubsection*{Ideia} { + \begin{enumerate} + \item Convertemos $F$ numa fórmula $G$ que está na FNC prenex.\\ Note-se que $F \equiv G$ + \item A partir de $G$ obtemos uma fórmula $H$ que está na forma normal de Skolem. + \end{enumerate} + \textbf{Para tal:}\\ + \begin{itemize} + \item Se no início da fórmula temos um quantificador do tipo $\exists x$, substituimos todas as ocorrências de $x$ por um símbolo $a$ que represente uma constante e eliminamos o quantificador $\equiv x$. + \item Se na fórmula existe um quantificador existencial $\exists x_k$ com os quantificadores universais $\forall x_1~\forall x_2~\dots~\forall x_{k-1}$, à sua esquerda, substituimos todas as ocorrências de $x_k$ por um símbolo de função que ainda não esteja na fórmula, por exemplo $f$, que tem nos seus argumentos as variáveis $x_1, x_2, \dots, x_{k-1}$, isto é, $x_k$ é substituido por $f(x_1,\ldots,x_{k-1})$.\\\textbf{Atenção:} A fórmula $H$ que obtemos na forma normal de Skolen pode não ser (logicamente) equivalente à fórmula $G$ escrita na FNC prenex ou à fórmula $F$ original. + \end{itemize} + } + } + } + } + + +\end{document} diff --git a/1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/ua.pdf b/1ano/2semestre/md/apontamentos/classes/logica-1a-ordem/src/ua.pdf new file mode 100755 index 0000000000000000000000000000000000000000..460cb187713ae1e843bf36ce5ff0a6cb1d1ea3b6 GIT binary patch literal 2082 zcmah~Yfuwc6!tNQE>L`ol&Pg$P$YmR`$`B(QSw6MkqiWjVyH{9Ks01ScF`08TSu9W z53u8VltGT6Ba=?xvgMrjsYH?N}@+HOsh;4!lvm& zDu)IFp(u|MS`3*X&K17U#Jrpg2#L!%)||;GjCu}828xuuD^P-haK6CzeefV_tc*UH z=0F;3TcHAQU1{TDk~xTP{}7VGLAbLO2()V^5>oQfVeHmvqpNNK&p+68hwAq@#+XX% z=>bV?%D#OM-|R2(+g(t2`dmx=FAie#s?r62XZN+ey&u!tmt1=L?fltApJJ6~yL^+E zJ?`oeoTm0aZRGaN_X^umNsdbY$!k_IrK`9%!|!X89jiaT-Q)5hy&tPdY4oW-e#Kr{ zJu)q&5QI7ow%&eRnbI;j)gA2p*-df1#;9*JHh7TBULl`whhvP9jYr6)!dZ!T$xvT+$&=hi1fJdt)Or^ zD&D)cI<&F!dL)-`k8Z5^*q^o}~*{X^?>P0!BM&MyLc=Gg;C`!Yk*?CuFbB|C7e z_0f&YJ%~_QE^6#~)msxdwc)PKNWYl)K>GaV%<3jtdGW0iFM%Oi@LSC|#dk4hvnCY< zG-ztk|IR$Izd3cp^NhQFg7?K2cO3hoQtc9_K~vTbmw`&)82Xb4S9OV9zl#I9>iobEXV4tMhgd|LJ0<0CWpGh z85y&Jr-MK-3rEoiRE$Y6DJn&=Fcb?$(O~G8z!*N_0?Ff40-jE;0tS@e9pey@T9W{& z{N9C0Np7fpUtYOiUI`$L}yq;UWeFz=E8>LbcM;sl39YLX2=h%0S4W+4cDW!WfRB z1PYOsV3I{cu^qaowNe%fZGbldWn!Ud4+v(S$&^8v&HP}s*+v$?-#{HRzyjLJ!gPQT zVk9Pxz$G(rA?YfwzbFuITuuWV#qbcY%tCS5EKPys&M=7(6QUu5V6s{1OauiOilFZv zAQ6iRF~|fi8&1GE@((b(Y#4#T`F&_ZF#_HsLu@DpNBE%)Bf{Y+9%6&WVK!Vc+>a#S zsE5Ro(n0lcRtjD?R!9&aN;c-xd~c#8hJmEu&j=#ouNc5jn}1h;v`AbbkrJdrOyJ?D sgp?6Vg&3ES7#6J}%T%TZRYA5knEmm)zyO0^34AN3r>kpKVy literal 0 HcmV?d00001 diff --git a/1ano/2semestre/md/apontamentos/pdf/logica-1a-ordem.pdf b/1ano/2semestre/md/apontamentos/pdf/logica-1a-ordem.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2a42046bb8575e343159bede78fcf94edfc16bc7 GIT binary patch literal 171848 zcmce;Rd8HQ(k&`xW>$;QQj5WoEJll&nVDI(7%gUIX117_nVFdxu4n$46BGCQBK|oq zXFqgQckhT@y|QX$uFA}&kP{aD!o?mzXZn)00L|cEZ}%};26If+n73;0hpQC z0RMBrF^Za7IT5Ysr{;#>}Vz4j_D>u?EqruC8o6V&J)TedA2&)?Evd zEXw`lWK%IMk2vlLt3DkMW=V|P#+Q&x>tOu{us^T=yn_jjQBFxjjo}Z1#xnZW z#sF#tMrVBnJ0laCe|;mTZ)z;#Y;Eud-+$jMVPj$|Y;NcTU}E|6L;%vRF#fSP zK>HtN`?rNz*#CFS((N%T0YLSIQ|OM|AFHlX#9au#LY=e(do~k{wH(_8~~<&?1XVwTx)_01dXnA@1MBT1maMSCQD~U)KU&aci(}2hwq_17HOHZh4 zHO@gSw<^VVHBfRu9oE|9(J=llALq z-B4}IZSi}0(Mx>v;KA(jJ<#=#!O+nuN(6C%)n_mW{whoXixdY)JPpHFB^bBge>ibg~cgr>){r`>6I)xfhOyO zzilsws3Y}gUJ2lVANon{O$lVn39O;*E&ENcu}$NA1U^YRWnGDhA6+lhqJ){Hd5Yp; z-xw|YKwWIMo3VXL$Tgbfw_xzAHJp@KB#6I1A%Gv+ZSSS|8LZ+uX5mimDMjsoi1bN( znuK-Q(rEDOH7Y<x`YxuOMNaT9i9op42@Ij@iH z9CPI&;@=gMiOe|54wQ!(wX)$x&@7xAlh@g9;nb|RO?G5vCx%bEp2#RIQA@3`tOrsp z55OVsTloE==XVJ&pYa=IA8)#EBR_m{Sq1;P7nzy;DC_Pw~q30TH0K z-hBcGjfz8Wx3$>$yClS|jKPA6&y{f_bG5b~cN>EP0+Q)PsTx#2f&Ivw@KY)Z>K*z3_Jj^9GW)_rNU^cj zkX_HcPn#4nd#S3jpw@))L&j_Kq65?uU)%9-K>Qo`$i&LY^5440b+yf?T~-vIOWhbx zDT`ixb?5z^;Z_i^(GO5HDHrN?cgviQxgDEwp9nT&1 zW)4|Xd#kvJi&fZlWlermT4>g+QdpPh1DMkb?B%@|>qs%g0? zrh+SXjcZ>5_g=Z0j`i#Owq3(7t2QLlfD!>?Tq}7Jg{*2x8#4wr?iwo2ztc?Vzr5l5 zQAVIiRp<)HlutXF;2zR@cVhf5c6GFwA=6lbLSK83-t(jW(%t0gE`b}) zo!i$Xv#Ku0bZN-8RzbX$yX(1B(5bB;QbzW1Xg=HD-OSllr)T~v2ajH}XwVv;noSK6 zI~~VbHawA)euX?$O?sVP8YgfG7#kjqkHrG@98mvY(jKI@|B|je5Tfj$mzc#uM`}`a z9s3$?!&vpcHC$lCo8%|pGTyb%mze(@M*>HWrdNddqKKV>Uk)Vps%HkO_f%|40s;kX z$Heoe9BT(JLq8@nacO_rumJAfS@%lM|Je`k<1W7b=O#v)o*S?5F@DroC0f}yH0n~V0{uRJWgwscF~Ad zbdR$)PmDE=1^eTx!Mcn$$O@CWa#K(@3`+mdgvn<|x#q?b*r3viyI5^*X5q@ieLmTE za>xg@YBnw+*X&pL=F#zHSB6XsI5&}ZU5opEZYEy^UG^2Pbi6M4G?<`sNQ&Y8qa{GT zMHHfdq+T{7g`KA;IZk5fJFC<@k8bIRxreQaoXAqO-5njz=|vIs6m6%&m2a#=^BQO zSF-D5_TUPa>5Nl=bZ8QMsxa+16O|Kg4bH zz$+a=_{9cNc8e^DfgG~UKjeEaqO!7Zk{VV)6N*(*4RS4~m4s|tIlbW}Gfy#O;>0=- zy&h!4V8%pRZqZPUIPuO@p~}i>FcYKqo~8Al*$2@DjDU0miTCJ7D@y0@4_k1wdWyxd z@j&#U!iqd6rM2`R-7b=zb3iJ~s)ZQbFc%!;sqpac&SAYawOJ z*}5`R!H}HJV<04Q*u?ndn3r&=ttv;*uqpWX#euZW4@3uQP)B!Q9e-H6kXqU{uVn<$ zNx&nl+rE=TnGrJm*<^?VCC|fN^BIQJ4Jve#;aIQu?dE3`UgH#JRMU{*ojtpZc=8IPeJE0YwW% z=Z)SO?fC+8Y3`fdrX6WC4oVE!&XLI;{ z3;7GN?y;bK4a$5$M`g(H-(Pt{W37jsVqK2)qI097+FBno$@}A?cTR;}b`O{LPDCYq z(fkmoO};_mLC)k5Lc5gd5bY$v75JYg(0^-{1MTcsd(iVUW6I z>plH+xhyi55ndL;=HiSXS2KSd`aQ=SIH)Lefg_UKBM9LSTQ2WG6#w9@geydiKnJog zjS9o$UUJYZ6idu0ak#4G&Z%P`Qce%?NNM-=JdeoWegllsE}oz0AT!Px(2mNbDnN^w z*C{=0+AoEgrm@gko1))HeNs6+**|L2uv8VE^rY4IGwG&evw??xe)Zm`vVJ$~q;WE# zJCaHRevl%XNxn-@9*Ns%hE#PK)bDYozQii*8N!46R*JwTghF1x}fiR)7{Qu@%lF&sjoh8;xyNwf32 z5n5N~%S9`?L^}ag<0ml>K?M|fKRRSk11f&=k8;ZQ2I5)|`Y%Vk#T-HpH%FKDz4tsG7Vt?a&-63CcQ2*jib~gB5Hq&WlY|%|0tt zh^kq1TRDfAU4|B z`~VTvVf~x%ik0iHF)9-?5cuDQSLbR{QLF4I9hX&dKMD5yaXW~0>LFjmeRG3znLI*Q z`5O`f!B$rq&fY$dBzUP)HC9*m6z;046L$~}ug3>*x6ep=mnU7D-`{=Q9}m9d;qHr@ zi`4E9M#%ZbPp8O1z~C~rlsYS4hM%8J?lanM zIK-hw;v~&k^ek&pPmQ)m5|3h!Y~UuF)v_MwvV-1a2S$*;zv@r zw^!gZ_S%U8nU~zcDVV?e0z`X&j8B8#>)JS%dWRxP-)+mo^><3T_tl&PwF0`l)H`WlYd8zfbe4X5Z@KC!!_ z#;|Dy&+*CmXVZb?fG3$vBsl z#-Hl@H4g5@tE^U(}~{(Cs>dW#n>eyCM|r zELBDE(WlPzIz%YEAn~zExPqt(MtZ~;T)E963zz%7In}=vNjKv^T&<^FIDdt;6eY0; z1N-ipB( zo^rEwX+IqlK|1~xW@?gB*A4YyQ?jG=K>Gj`{G!`W-$l^FF%mxl`z2s^=p}yU>OA0OXzIRDT5Bw}%(n1ME-JcM({)mKh!!`hYs2}ph&N3C;d+_XOT&ZVF zQ_)R3A4n+HG+!xDF>ml(^BZ}Z9mMVj#hvsOE(X$|^O_HRorNx)_H{bpcc1sQz|lk3 zBgVQ6O4$Yt{*ck8f2mNq0S`C7YEa8W-jx(4N24J+@0j1xWRMdKj_Z?+Bcc#gR} zjDF2r$hz3jUbjdA1r{|7T@W#&q~e;^DS)G|n7BGW(0sN>N2_Wpm*-DEJCcZ8v>HIV zEAsnH7HFty^PGBXA+Pqe*|@fUIy5I~oGnO`+FTgZ5T`l6^aQnSs%W$IlbV*3|PnxuD0tmd8 zw`3cSt1s=TtRlNkX=l(>+R&Bz#^nfuTxR*$=a*jzwqXl%BCh&Qw`fYhcrsO%x z)|+G!->{n>)7)l!h`gGEg7#98F<*={Vd8!usrtd>LPYYFh+!jpD>r$g#j0R55I#0k zA?v1H@a9lDYS!Pvsa9wy6^kxS1}@;>T~1^4?E8ozBWFZqo$DX15XplMH@9Hg90*hb z`y^RKqg^IRYBIPqfHrqS$|A$BrTD1~7na0T$IEOLIPvJ)VN~1fEMvGt$q3*&xeDd+ z!xGixQcPq_QZiZ`IBx~RRpvCi1_S$)XtIp7$!*lW62_*o7m4)?+g?2)ScyEBZ!PEC zon@=VUbSL}#I2=SE8vF61aSrzwI+{St%}UFfqZ%WGP%uBPGf7GZ+N#rZ$-QFR+mk- zj!KKHVkW;UzS>vNUeNb%u?neGU<7>7wUPGSi4#W!7F`bh+xQR)2yqU25?or+BYfoP z%1LD5h}ZZmEpsH8Uc{F#)<#bb;_1pmA1F`TEEQsTI~hiE0ZNQ&=(vH3Ml#!bbLsh1 z?omQI9J;FQQ4!nD2KPTW-lHD`zHp03iQUt*?=0gS-qNEL^tLxAi{MB$rW>J35Y&Yb zX-$x_;sdSEfBS#fvWIevQMz)a5n!dNgT1P?cz0fSl^5eWKr=s&SD3kc{^;!ODB zyt-CbzC;L!^ZXKk?*?0ACK-3dcaQW<;eD>>1P6i+uH5&c-Kj6F(+|syk!Fu72JGAn zVHR=T2~bz>_TftCv(M!)jl|9lDUCc!csiZTlF0CcI#{)Hu26d}coK`tH5FJmF6p(Z z-NYFoojvZ|CIu&^6$~XmpLz`E1;O5?Mjl9dAIRG+#nUVo7lC%I8=Zqf$^ygH2etg=aNOtf+kC%OLCO5t9 z>ggo-AFLj3g|qk?{S?C9CyFD(VcUIvzF7a(^6L`kuf)gkcfq(bi7|4_W#!i$N0)oX>+Qyf+uK1M8mCK1`e)e&y z4VuFzRrj)t8!)(ZKyf(mm%%)I+G6zZbGe9+M1j)NvX`yC=3yAI2q}wxxE{nAEu%m= zyTq^8s`pSV8|?T4m~U!_U$!FjjH>M;#f_3j;4B(&U9awoUhLLfxA^iH5JYcobDZ#9 z*~dPrbGg4=zUwG+=e#3;E%809+bhc@xC+%-w=}M8auOG(yvjjP!3dFZ)^vk;?vVy_ z<)%XlN9y>EQD86!K!tWHa)Ws0`Sk_IOM%IA9fPQfub?Q$O{vldp+s*Bw zU~t)n_))i%*baR?mo)$EIO}=$>QD?F?6R-uWWh5+)}qG%RttNfi~1B$=ack1cym+7 z_%g%KhDX=Aml`|dveRW_t&-=r7-zMB#70(or- zKm2c)A;ur>OAdfpgpK^cXYJXGiG7cvLl)Ru@YUsc|+m3RJ@#wDKijj+`_3 zG#cb6jDRT2CR#(kXk>=8{pG>qYwOKIPs(Bu!_JzBu2G0NXG9EejPT)TT#Xhu@u_9L zC2HGBuMYZyPh((y+^&w6v*@|VGAZ;&#ZrURplN3?APr=uIppernH`K%F%05*xj=&0 z=WOL=E+SE=8)8rBS|yR|vrcMoJrd2g+M~W|C5ZF>Ac=;8pt9t6;nh?E+PfvvX_b(; zvsf59v??h+y6Cjooe%Kxk()!l4rs=TN%e%nm_spRUb_|MCTZ+LH>0Z9A1)y}Q04d~ zApk~mhb=Bp&z~w?{=@(&xaXZQ1J;)cd~$&W>3{)I5x2y}hLZ)mDnowhUCx_YLN(V^ z(bh#CegZy;QXby*u;$F=T^~QU=_`Or2J9<%xv1<-&F4adJ9#m*f!c^M$(S`U1luH& z&9bfV*KMd8E59<_kMC-WQT}?jH#ZJ39kAX?tM$^X-Ue5gthaZyS^r7bPmLOsXMH#b zel*TLV-!l)tXgO?Tc}_fEvNW$ESRO|Mth?hE5xofX~8G6W5W5ojR;1*_{czo0OP;) zIRMVMEJVBo2TN+)`IXp0?8>J4@k3;oIyr_soFzLe#n(_*^;bpCwl5ed?ss;%WHdd> z%%+&3)BE`!Hu@BE!AHJYs0O7cn9Y)jKmkThaHgAkpAM_BiQs}fs5=A=Ja@lQ0@Gt!{`1W zS{;I76p%f=?<`!*KXN1v=T|&6y-)grp*w*PRkzNa_3rVkc>7StfglD!=8s6DYaDV+ zor440yA}@NZY!LH=4=1PtesyMz=Ze7hR!VGI!ZS%96|fUF>l}KfXwnLwBt^ut;IyL zpt5&M@7sB+d?AdLf}VVsW{_o5-q+CrS%pI7q}KY?(=!_Whb~T|bPQm|It{AneVU;} z$?M#wG+~>zjnS>Tc$3p=D**1J`ec|#w-uiAjTDk=3cB*@+? zdi$Aa(QUa@j~72G7IFL8c~z$|)t73!#gyA7PrM~JK}gYb9J%4>pKPP^l^N7*+VZd@ zQ%kRK@C57-`-Trj2cLR!pLV%k8!>+1vC;dOGqp^D34HaE#5>=055(fd{a{q|^aHC) zs(0?C8#gL%Zi$p&HvHiPOR}6)o>;^nz!^Q?d}tOAMQa{y5;QhG z(m#_D4cFXaxJbYmg|R;IiD0HMnzVi%OF@X_J6??IRy}KRxIKAV+&HuotOLBZ?X0&l z>BBKY+94Scxg-hfMspPW=2CO{wN6+qKuwi0ebz0F;Y)cuW%cpn+`bAQS#+I*`jC}@ zez0;+#Zz~XPz!=6cwj1BYS)KcD2lCTzHqzbUaMY#ee`}+kB72wv`l`pwQWyexPXeI zy93uLrAq)a`9zxF$DzLAY|FzY>6f*gw$NSIIZ} z`fPr!kmHaWS~I3FHF$_ge^jZKf|qtWF<}Y7_Zh}J#dbkYcIEBT@iryjl^k3mR&4TL z`Pvj`L-w3T!YT^P-&T3aNzwK zuR2}{+WG?=qYS?q&xowxnvt&DtFM03C06FynOxX3aAnpGwnBbI^=~GT*%obPa0NP{ zp`{m|TA;NmArCOjle?4*EKw}Zi4jS}zJ$(Oo_M%Cs4^jg?Hs;GV`zfc(@nOJ%w}cbYwpNokb+70Vp5co9p(N(pR? z6-J@iG=+?Yf*g`Yu*X{Zge~h_z^l{*WD)Is)^N0w(?_8py_i`fiv`gsC`| zM&D>XF=f7bQTik25X^~On!=5}9JHMihO-{UjIDmQUP8i{&QpBvI{b+u)CAMOtjOvC zq!Z{l>b5|s@`~TwSfg6E-N2MM`*u#RyYH&}?s&F3Mvq@a0F3#}98Y|q_X^G7g5YVX zn-rqY3Fy_je`Odkw$skEd*R0)k`@}9UP7~PIUY)Jgm*!YSV77x?tRFPJf-t-R8?iexO19qLTM1%o?wl{~Xek zfPdq2!o z4;a&;b|d7z|9bZjjswef)Fp;`c=AB#af>@43K{y&u(FcT)zV(W#|5S|LnhJE@EQ(U zZh<=^Qk;FoY}t}-h!Pg(kk9yjkeNGM(cUzOS}qrtEwPTB`i9Cs^+Sy8XVJZ#GhsRw z*r1*(E)T+Xjz{uK9;I*9Nn_c2b00vgfjH@mo$ph2fNOJaP|&sy0aO(7_{RjNpeMDG zppU0+{uk?cl3F2Ln-1~S)2$Lny~+baN7^xuS+`alt{N~oYJH>f2Rmo|D8|y-^-QS)kYmw*)i4+>C~!< z&0%*XejXcbFVqxexTQ+$Tb0-MO4g4c5i`(G$aHjIL-2>P-c`qWY?C1BfIQk?bo<&> zBiPwJgRLIQ&SDo~3qnBTK~Rw=Z$JgWk)vbw`2lE^fZ7lo+o!MPZFDEY!N*la*a*mH zhVejLVGObupy7w3cEdBNWo@ku6{;aCt1Ozyxi+_{z zc(DSD*TcaLf;qI`khKI38V{4^he`R&4*R<$ntTa1n~*yjF#AA=g7Ew-+U;v^ z#FC^djW60}CEfW+M1OAG&`S4>2d`g&vtOz*EZ)kRFxc)@#RjD{z0tujDO)rq_@_Z+ zET_xII8c8fEF!ln8fYov4c|@IJC@RR+Yl^Bf1!BoZw-asNK6ZT%j`lL3(HE6ui~aE z2fLGQO*+_jSjSJm*^T#Z?ioo2Sq@z41HmHDF)p~~w01Dl{wg`P)Mf)R?n>Ebp+9YD z4dAmHll0$J_EFuto$DJ{KQ}YX#4=|o{p}*^93y3v66~R$;~7^+2pf!?F?e-`Zo?iF zb2)CPlXM^g%^3=qf`x6x{u*~OUuGKz8x@lFwvNl+opqDg!Ug_Gd z7zJ|=nuRq4rpJF7Q|Ju)Di^r-b8S_ux^-hek3nt038LRUxsiQ%*&##I!}7cc*QAYR z_6u-y%Dau_9L`om=gZ=8Z7Val~pZWLQ9xsh%To1S3xD!N~$UQTG+xKs1J5?DF2p$4hgfH{%%NTzc5 zbGXj$suyNjpqb{!L1~oMuID#DS9$albxMUfDH&c~+sm^66dtqqn+6E_Gq)o%YEwpP zs4*dkys&4QL1ZJxT}9W-Ou1H`xI1}*%lE!)FB4Li2q%kKAat8DdflHKKb9|y`Of?l z$$g8(R*wE;TNzoc-)Bzs{X))mn;+0X)7#U8wi9^uPEWG#MSnTf8`Y$!xWmTUh!3`U z9?<9lRD5v?g!K85omSLqv{W;ZW>@UBxgH5`buw1bD{a}(z_5Kp(kM1-#~=7BgGVq4 z6ggohy}Q7JW=2k6K9+gce7sJ^ri z#`75(sL$BD^1C^pQt}fBBwH;+qjCUo-~ne=LNFgf?q#T(`6+ zlWueU3I}HRo!!=JW7s#5H)!bFDH7}th>$+}r~W3&>_j^U;h`F;oypx0LP?3Jne#LR z=Ozg>pXC%psDg;Wxzqb}0L^lq#mDfEHI%U|ja%7Pi;j6Y&79b6WJWOkA>Ork6d5F% zyY^;f82ATjqq8&8o9~kP4)HopuEG&Yh8 zpb~g!xWBs`w7YMZDsjNgFGFN4GVbp^Ddmv{{Pb0NmWly#TF0|NShdj}o|wA$G-MtG z!kA{+o?58u9tJL?k7ucjoLK0veeEPJHJ;#W)g6PFI(=O2f3hNns>K|* z#mxjADcMN|ak-E${HS{huAu#ibqrQ?bi)EKmtQex)MsW~BDD29fkyIqDcfTlEW{#l zMFEuGw5RRfuRl)K2~AZ&5y!>;pkx&EAdMsaPg`mS&_lzlnWd0N88<{T`CAgqK2&| z>Zo%pQ_+CT_cXoKy1Utqs~;{pm>tyj#+1sbsuLJv$pfBVO=^oD$GK}B?p}zC z*x|LM2U@l31{sSV!zS+vm~7WXl9?bVbjGb^<*w6cqWIPGR0R56b@C6` z3Pn)|_W2Qo!No(5t-Y~XAn@#01}`R?d$m$V{{X6A>dX_7tknB7b?g6#&d&l?uNnpf zNA7uNf0WZioce_|E8TPvHkwbouEFQ;wERv|12F!HNmgUPymfxhD$dY51keE@l>)tA z#?<*cUNXc$A(OK?wqtdniu1C2%xd@$h;xf~0{l6{OX1r;xQp>bK0JvRb8SeYSKOBB zPlI)aJ;()vh1q>7G~ucHuzuv@!x5mt6w7~ot8g1Zw&vT_C>-t4{Yo}rXDJMCH8e3? z(fM3I>3U&a=dx=M!zgvuH{tZHmXD6;tQmM2z&a|O7e z1>#6+#`@lp;ht3A%VnG_B4XV(hl^7Eb|&X5K|UZ!8FS=yh)$ya`oWFFXAmG+&K^l) zz{wGhZLkRtc}Oc9dfQZBRgME~)R)rE1?nrMF9d6YWZMd+Ag?*dB({(LERs8G=F~QOjP*{n4UdYMv#x6-`a5DLJCbsl5>C3$0$y9W) zBO`rdN8a23ua^d6kM(Nbm3@*k@0}lw(4BA4Sc(yoX$%T*y{N7{QC!3DR{|~|-kr8Q zkgGcBEk{s&WS_h>V$}@$@x$HsCV3EdVPFglPIQ7PDyaews{9lS?^KT zut~*t;+<@0(rm_a>?GX1w;C`5o7mG^j9P4W;@+<_qN~zk#^VvBW5dHp0ZI62R^@YNlE-kxinx_Cq$-2 zc&y#de?=K(W=q_R>?xA*Tr*S;z<@Vo1?}PQq48PDdM!?VJe#Y@qK#63vVbK(aVf_z z)(mq|3R5)jy<@-^hjiF3GM~0Tu$Fh-j9?d0+>cXCgwUNv8;->Czm;Kh@ceO4d_978 z_&3zf@^?qD!2dqseXg!)`$y&ZOjb?hAqboD{0X^LjQBaM)E@^i+-}%7%yeG| z(xs=b-}frNPW#m)W?PwzB^%IKqBZZ0=eyFd1Z?8i$7YLFMHe6~4I#m*34(ID7o6+(y7Qp8Wdo9Ja}OGX9wu+S#cB1&<#^0pSo zl%`rHi)=iSIrZ}d!;@wE8n*j3xb^psuD4DL^{T^BSdQnGfac9%Ay~naUj}H)Tqp!3 zz@vi5*ymLT!A_l|vRCEbl$zoL1u0fg+uuCc=D9m*-py_vS#tVMCO(h0T{em>WK(fr zY4@cmMSdgf<~Eh<&Qx(E&sFyKYNRFc^=G|DjVh~de2u7T@ip{z*0nke^%wJXRc_Zw zAn710QN%;AbUo2M9=Yk}laR<|)+R1`rg04+TCuLP5|pyH`lC!I(F?p{V|uVH&A5=` zsJWCX`M5ej*qu>FNO2^6WBbfCZFp`1l&Eoq)ry+fm1B%|qRSu`p`z9N*y(}Tp%;@D z+E~uV97LDoRkFrd$yNfo1?Gua#SKxeWyqCH4zZ@kTj5^Rph63BPxNK8w{q!o@H#P8zWQ`MW47%^ZrB zIo_7N7zQR?w?r$Nx++r|9sx{{_RTGNpT@l_vX=>)g!?K5!A`e6vVDaUTk zd#kS@f~26by&3=Wi!j!uIPfw`Ugr*&#UNI@{P5bED5G$h0fN!AV&Ynd19As?@N zd=A?>F5S!ZXhWVGgS+nTCOjKJiJANqHFP?J#Co>A$O!no;XZ!fa{XE(e-eseNZB(Q zaZS7IBXWCklkYU)Od1Lx)Y(cu)rJ<3@`8=t*g^2=nPlQ5UM04wa~ia8j<(ceeA5Al zN?m4PxPeRte0o35%qeJ0BodhfHOqj4@?{b;eO6HNX#n9@6aAki1{^aG>Kz zl@b&6{A!^*DA02$iwk)IILndcdi1?RYVF*J*$!&>UicYe6D4DUktw=ly5pG98fV~o zVuv+$n|g6r^+Vb1A_uv5f5X`Q3LFGqP^ShDaZx~jD<@olE_anz=<07i8`H;zlgEeJ5enf3^iUt8kVV*O2=id-^e98Y$p;Lh2-8#G=51LIyNRO# zH5MR+@OQUNgVG{oeSLX$b1=y4D34gd?Md=+hr;2}_;mtss=>NlXYeuNs}NzLjB2K$?>buCm7A(B`lp)P%B^ zD-;{{@aug)Q$$4`HmL3y?#Dt!Hixf3`34M7{OQb$+sH+T?kWIk*u1n}aFaaZ?;)r7 zTdW9g*im@@qnRtubn>c&8v64)9W8QjlCpe9Ih8b<`N1AqC3RG(yEhBIvg6*2!H%{w z6H!NT=S)dofPa*ik||{3WHr(XgI-fCvgv*Qcya3V?s31a|H&RKJQ?IEp%rUckn}H( zWStL!#kh8T#p&Jlq9NQseo2Y~!$;5%*L#u2(QYfw3>EBZOE=zN++crIDud61mlrS2 zl>B#S)m^UbO%7h4f^VhE1gkMvLpJycp1A?)rDDW!Dt9h#1(L&Md>2zi$JM`6RfS$0 zTBl&K986cI{Ck_6?35?dp3T@Z*)alkRbGwa6TvM+qu;{!#1!~e>T5A;vFcTI)BJa# z;KOd-x4-V}uU`7{J>LrLq+N*v7z?7sk6;NL7a$wpiybAY<1^Tf_=W^R~jF&VD5Tb0xH^HVftO--`<*)Jepm^v>W8)gRj6^ zFTRwyXvfqE-+X8^c0~ME204-E+)QnyxNM(!w1oYhXxI1|0{_6Ff;ZBcOwXKsm@Io;FzeW@ zEEboNdCEh3fQR~QVfl0JYV}nk`^$x3qG{018q^t~{g`8AJk&y(DThpJ3xV)V$fpU_ z42L&{gzlSl{wJj|?A}EyrLDZPlqci$p=*rRxg%9Et4kMn%VGTj$GMZeE^|Zdbp z>QP+Aq@HdOH;GnkRc;hxTD74bPlCJa4Gj3q9h#8mv_dDqdD0}{p0_0i%g*)d3{ueEeC;zMmrS7PU)>@T z>wh}Ne|5P0sZRZ`tMmI+r5yiJo&TzOB|aVxgVnVYlexkwvnn(YS6tM5K83Yjn;;&X z%X86r=?6k1A7t>GC54DJzpJ0GCMOe`a~h@JGDu#{?F_Xs2Q!k%>#4R)XsgYDZXcUx8I)!WmfU~`+cYFdBQXqK)vZIZ8ng86pC zO*y|1yVBI7kn?zf#ffDJ!n+avgLo#WX=LkGsEJH!If~9Nc>Eu@T0qjy)7;<+#ulQ$GsJY2T(vy38FXrMwei_<(GB?e zqVJoGY>=!f&%I}cagXJBIYsGHnfeWyk;f#h`u4Um;>D}bc2s#a5ZP#e>~)JnX}wXa z4&5u}PIeWgdv(ylu``lh;7|E(FsG!)Ln$@vV){=whiD`8?h_-FMu`oSpJXRddvzGk z%F*aHnWB^>MuqgGvgV54i)limHWkiR_FN^rg9z#lkI+3I(L7kuZ+>dI;l*q_$G=(2 z!;su8N(`X6m|(m`GfS$O-7?cp-0&*nu)uV{;##CB*DmB|GbgidWE8VR4?0s0a>qq) zo~L?e;qg&O;~IHX9SY50OebpSVMtiid>;;lP?ezYd&|IS;k7&MC{t-*Z1^IjEJ-pX zf)R}=3G}bw3aNt=P1gp(N=K@vqq!*bD@lIlCvPVU-{$T#OWtC1x0erOR;WLITd+c- zIad(x9#;6i(5BxLVruzec~^#RAMU;XmT9FBDwSzekhw2cJ7^o_Qx;RNkO;x6#kPrKeo^Xr+ttF0-~7r4G1bo;)88)cb+?7g5X&|^ zls36;1@5mWY3shm4D)C5tsv-!oNy&Kq=T8;f>9wAiE|o8L)qXaDM~#vnM*KDob%)y z0COlQ@9aW?c1gI67DDZ=2uxhQsn;1Q71Xu$L(mRb@TrhaOffX0>NOsz{<_D%*D>50hPTiNM^i4!G2n^U555z!=hU$B zua8}k);%c0-}4g zwmo4x>U3S?*A8whz8YRhdJP%LM^s z!GN8eNql^_A=N|j$lRjgo^n`ESkk-B@3`-Cmr?jb#) z+Hq-7PLaOq|Btk{j*5cq)`#h#ySp147`nR~6iMll?v(CET98ISkxr5BP6=sg5orN| z`Hj!xd(L~Fcg{NaeXgZz`QO~v?EBu=zV@~EsQfaAEn4LTj5MXLZ~ojlYdg6h=y_{I zY+E9^HP^9JXpyq*K+yk+YO3ldhow4E_Tq^PeDwbsMOBI?T=TvRR+7#*%oyi-L`cFQjVUq2W zOCFKfX8d6%?bO##Q|YTraO+rd%ik5_()BTWn<_ZtDGOWL<-*FI)l>$yI5bjK_$rh< zM@W%VUEFiqPkHH|rMAtcHyT!KXj>dNNT?6~9$(cql}eGR)SYp}S&*U?F4>)goNPm1 zbH8gRA{aoa_N+=R?<|~9K4p4nl+Zk9RA=wnMgdi7+1zB~fFS3C)pfcHIW{ovy*z#= zB{h!#`&fSMUHj>c+E-tJPXje#?$Vt^Q|lC`r&qXLS2b)(HXi~IJq3_-`nmj9gIC^v zZ&J~)d5_Xy9KPfCN`wwhjoB~VcvFtkZ-0DX%Xd|FPoXOwUWQ4;%Mjo*g9zKZJ3#g< zi}2vhdZO(99dX~|m7}*nhfopxSj~0*c1Jlh_Ol*>yeLS8A)b=qy0smnUXS(oS|hh2 zpgQtHsd9QOSs-JLA%D4)gk*FkPa!;2dtE?%B)0rl5~Ox?&$zmZ4hpPBj|M@tX*=YD z4pi9KK@k}VG~^bw#;OAHUI$En(91Da0VHAMpCdcz&slv!{L(q^$DZ)* z3%=qpb=!#@NJHh$l40+Of=9(m3ebepNR%J9!PGU}wL&P9NYWkZfq8GfL*k3&om=TU z(SmL|+E$x5HR_Ostl;L&K8WY8?MAp_!0voQ%@U}X^pTo+Fc8MfsDLRbh&5MoyikdG z=TSQ8YJw&iB)qTY}`{b7+oPEJ@60tQrr? z#}<#?2QQO5wS*TLe6RkB<+60cGW4o?dBEXWpit`pDYaNff+6{lAQ=kQaOaRB3GH1* zr>{g|K&F5U--^S>w~UMp?YG7@-v@-SZ9yns-aG5{98Mq>CX5~D+z(iUuXA&|Wh|J^ z&kwK)*nIK6*bc~CzG!T~I#E<4fmB6o9c0pU1H_9$a$dTnUsBO+MQ1+GWdTw0*7S{@ zt$lKs%b!yZRq0~G%zx$z9At>^e8X0P^(uBvdi_Ke+PeUyLCFo-%JWbiAa}Au4YDc; z>G&Yxc60hok6+sIA_DCo*%i-{)EC@0V^-wTB z&V2j@CX9(Z1-s7>-PY?MdaaqfAuSeMk|Yx|36;)4n2?5{SIP22bQb3(+sD^tP4#dn zC>vcj?g#B{$TU_9F}5~5!BGOXI}2Re1Ex2#O7)|q>drZy4UR?X z8O;hkKdsWaf5_~gTIbMGMBTU5znOilCtn|&g7?)^eYm@U*O1(0p!lV&TfTvEvp1@Y zC*I2PnS1X>(xxzG2c45xffKH__S`7CY<_)m;hOd>pzdm&zO;9caoWQ_uH*w*_=os6 z0ZGJ8Ic9Ax5hwji9rf0sp6Yl}$sZ=i^RjZLud+L)^BBcxwd46ncpsOp#F@)oOvimn z6H}1pX{Uj|BV(lT>|Ny_;D1}P=p4IAHxPIM)*g@{D-*fYdL__h15?eCUKzr$w8PL(SDH)2yi(Y~+Yen8AHg6$P>9n!8=p8%AV(IYf&(^;VbUd=1 z)2!KOE!b2U(Q)6sJ-_mo?>pEGV`Kf~|JcPxbtT(W?hv+RKx`5<0hW!55<3|sdYUFz zMlO@)C9G|pQX+zPS74ZC&H7jDwpqT5a%%Px<3$8v+Pulu>U9-WuhCon25nnI6K({% zTQgF0t5@vP!>=x5(dwoF6xUPsMWwkUX_h-zfHMk;rG>SAJ+>PKvA$h{GtSkhwitB_ zG%_ccz4{{M8@S;6v{q=iLfJOM4SG29$W5$K>jh%VFuCH`l7V3tsbB`^V+2re+{tlS zk`iLzG+`MKk%j1YXHHqJ!%{g5*}vieTGMw3K(7~FR&uT)l;2-1<;pOM!(B0GIRt$JkxHx2uD0F0VE-7D- zB^=opobWDM%;I>AS!9__pow|ZAk(+O2pxoLs&1-HO8vwl&nJ6EhI?>1pAoNyJ?wd= zt??{?MLUN{pWs_YSwtz#6qCdP+!O$Txt>CuYRZnj^D&Ge>?{@2CHn3wQxpO4blJg5 z(9nbSK7)R{1|ATV4wGF<5cH7NSqR|VhR8B~U>#yjFDy)qx+oDueX!LJra}w(X@1%S zq>4x-3Z^Cmdg{9OrTR}=q})b}i(Xn!4@Z-GY<^_d_c^#q3t-zeaQ~b&KxBNmyd3S+ z($Wp&ziVjg2oQ0rYiq&2t=ejTc^UjO4SOocII+{h1kDky02>XJwNJ(fn5|K|X30k| zxgT_CP!6(m(9jtu{;D)@T9#(W4O*O16Tr+Ivc%?|JHv8WE+BK4iFkHvyA21%`GMjS z=|Pq>P6JCpi=8{aUMIDnBDAi$xrZw_2m2$l$>7*>qUjcq`e_(FH24Jm^F`(cK0Nr+ zl0;FvC9vf>OmH$8g>6cbejQO#_DGIS?fS^IFEy{8+9CtN zS-+*Vvf?PB1{@0z&c3s?XV{c*FAd0wK`DW;9E481#_PGN(TS@R&!Ut4`uM6a;-u$H zy>;Hw)H?9u#XS2OVwTdS)w&yE95yi%{&Q1ruEvX

zZUY|Y3}Fe0kpkuD`~8f-)GIsV?<|#`);2SMqsh@ z3dD|<3>pao_SI10zV1vmi>-f+b0WfXKy@^-*$%*?zG0+~8K)mq>z5r2S`NiM<7-sH zQc67}(hEAt?^R}mOQ1}>x&}}Jy%)R<;pEYEd?U_6v7=mK&^OBPvG63P1Pl7MyiF84 zd0zz;VifdP5EdqeQ7SWa+KAz@_b}VnfnnZ1Z;qsbb!-rW1}zjm!zK9e$0uOwBWgE< z&#b3n1{>TUe`KnzG;?N~MfJpXcg1G%aM!?JJ}kP>^he0+^mgDR2t8T9Y966doV7?| zQE`ze?=OpJo>)gEPk=Geb(3|ERvjWE37M4gI2 zMXE7;&4~&Q&WDXRsRj>p0+l3C>}h(p4~7T^5n)z9-XhRGHWZrzH=p2x?|S%jhfj?t1|W zz5fx0*A*j^@am%YCe8Paam*{{j4JKcBKAICW@Vq6<`Nglp}4x#6t_byEyLrUyDu0F zU-ntdy}ES;xZjv{j|Y&pnC+78E;q@yv$>#{e;G)--o?|673a(S635l`YPUALhiIaR zz&@`@$har@f?RR5vnefe*^7B%+Y^90bHf*fLfRLF^1KhZ`f(x-9!XymiH)4fdlJ|Y zF}l(@`{n0Ft^QSyM~Ke_`*r8p0~PCx*j{uey%QSo?H z%%rI}0q{u5Quu_P`MqeoNc`4^F;soO;PiB~kLBojppS2#Ww@zwA9+t@ zGnbCn`N{oth^bFUA$d{e*v2qG5G^p>_Q>uTz?R|ApXfZo+m&J7*mk;f89Bd^gq&6CW$MQ zG!;|`xpNX6e_uJtb$EFA%zLaNDv5n6bo5IwF)R!^=jo-- zcMavljV8DKMf0g1z3H6`m6O~FZKVJeGI{!Z@aqf6cOt%C+;v`uqa+}q?$=M4NFYZ^=$h9F~Ls$?h+0!d$ zr=?szgkRZSr}|3`vqZE7;PkET;Cp#{ISTro(T%sP>rPm9Z3}-Fp(rPQo{2SdVd;RDMPFyuHD0k$e{y&6eA z!I$@Lv?2yPt}hK_HLw(ih7S}<%+2+1%l^kHE=cs?Bdse$b{qJHwV~NyWP9RQgis*l zlJ_c7P~hi&QEgLlGD}>~EI7ZOj^gydgC8O?R=9e(SD#@<1z31o#>)u5%pwr-#PHCZ z`<(4FyoF#dgf(rFWYCQ7dW#udVq3>@xq5^=U#$!F4+$}_d6nEwCr5d$tFn(==Bhv& z=_BJ65fk(hu@}VFo&EKRjK@n*MfSJpFCl@zN0c0s>NcWF3+e3B?QZQ_WPt>MHJFc= zt7tU$DL4BSDj0eKH?d2TN`h=LmA&EmIg8t%U?c#Ia|0hv3>_x8?0O`y5how%AeT;I z)Vjg?mDtdf(*w(;pB0S1FpzU{5tiWJ!W zAO$39BG?19Y>DhP48+n{xn40!>>o-znZ`qYVPC?Rz%?!CzIh`WlmE=cr}7W z`*Dn&p-A1zW#n)epQV>3pU3W-$mrh<2*l@G$~w6t=+3(2Km!OGbLM_H*ZQxz3f7Dc zgb2d>ndQe&-Cy{iAh|bq~QNqDH7jwf7N&022oBmuheCY01Rs8*S4JQrfCf6?I2ALTeYGqB z_P^_xoO*db`F$K#Org{tKSbpvv8WXXAE6BS!SkEm+h~b?4}c^(Fjty?qXp0?L$b&3 zSuec@gL@!<;osqByk*j*CW1jC4~v6#QfRbM@Zn4VqCH}U0I?&K$rT(oaGHrGwOHWs zP|VB#c)8?pFNK6`+#}?_XnG^aA@%q;EXKtSZI4`ZoF9Qf4TIV$z`ho#+#=&m*)9tA zezOpvi|Sg-)NCTGDrzRI_=QK|*dWp@F3k}s-D(+C zo~R(1E5f=dLjGHeWceD)uX;~gA9+}N&E4@2xn3o9c&d3(e8l_CQ7iT;N%SR$BOH@j zi+_Jo)LH9cHD7fkmM|c)2O1{O2qp00-+sd+B)|Q7yHN}fN>7lp&}?e=a4W;gOi(4+ z&}y`l(PY1l{gTAGxWfg;vwQK)-pqxHvkRZ8F2}MIig{cl#T5jXe(c91<*=2p(n<7` zSJ6VBx8R9z8{$$Sau4#a&WPr2oB>$*%o*)(s-zS(ZCNwgwS(&5lD-#WJCvDVk8JN3c3vf(VD*3l z55Z*j;4fhCI#}HA8Vd|w91Ju8>zaZ?uh#(BCol@P06aiv*ezfOjB$$F4o(82&34di}!7>G{PC?Rk`NOIufrU~i~jM26rt9gXk9k^W- zM;aSTnkQcAgfX73M@8R?mg($UWCsPl3`t&5gGVhC>?f)owQP4Cy%vri`tjrT`s70C#f5VZ#Wk<*h(9EPUyEVwl0zN#PgtWZ8^Uv(ckAGCfPL=P4bOJ9 zaaGWxP>4w+fKB`xHe19L*gG_YNCGf3)_0x}VP+bG8jy^EVm|coP=rd*TV`v@uTIpN zV6l?k+Y@Br>B6}?V>$6&Uj?Bdop;q<;FFY+g^(6QkvLF*Mfd>rCsXR0jnHt=i%Bcr zfrac>jCLs>;of4Q9iI^u4>4}qZZU|%3Rb*;rXWM8z<->V8}x8~;4o2R_p1lKjz@{! zw1?xaj=flpv50PqdZD3Eie92UQzI=^i}=}TTKA;r3P;2a*s`kloW2(@z4EC1{gYQI zsQM!n&&pW$bT&!8hPXf3U;jze#BoD6hj`<)D7*Gz^1}6}WXDQ}R`d(`JlwPJZwZ;9 zrV($5DGNwo@nQCu_EJfXr0}Sb9l7dEs21tBa+F0a>;YZJ&q5>t;rixX(s6=F1caPxp`4x|OS5sx7q1TL6@zgh?8c=?&Za7l3g)jNQ{ zHoT!UnV!)tC@$kkQ(j}~)ay!8UX!I+(&(a2ADNL24hCbv!-w7lQlCJS7^EEtmxb_M zFgP?A@{c(BDdb;xrF$?I%|WmXdck8Yz}QmY)K&lW z8$hx|k*mTlUnWO&@LY|HOzJ2<0AuxE~%5X)}_LUL~Y*PGyH%+(Kexs^*BBY0c^s z2r)u#b)|VfTY@I*HGRqGmPT13pJ_>CX_k_aF^nIBg!+tB0sJE+{q0$-a#}gWKx>#5 z?mKiX{OFVC>y~l@?-yS_$GpL+czSl;-@a|@@m5T{-Pot~;|DE4b*}?1-9@}A&zNQx zIcFY@;rz1wkf*6U0Z9qm&DkU)0>>ZD= zV}wn0+{%tR=4Vj|4PyRLRg$?_R61Y8O_q~UGmfh^=LtG?#k)Hi=0F}Op#@L@yx?O ztA$2EC!u%8a1(a+WQRij9_o~LN`tUQ5TJAW17AhW(zq-d^up@ib}DIK0BYD%5&rAf@}=kNf4<;I+PwY;Cb`@2J8zM zo{ZL6Xy`(zExGw0UKTebcc_I)VE2pH_A$;JBafmnV{gR8)9+>}m=>n>^(k?1@aWei zdM0+$naJ0e=B$)7%a}9K-`1k7<>@W$)Gs>sS^I0beLmg^$$Rcw)VS%KSLFn8H+(e`2*Yg^5v8EorB~Xik{IRcvqJl7<}$UoIM#C-Oz3Zn4~C` zJTwzVHe+2n8H`yP-Ng>WESX)};(kufv`M2nlS%ilnl?lqsGoJySG%GY#ZV2pixD6Y zQw6iY26pwjNeWTEnjF#%y0T$3uO}qZC=TOfaChsirrjQjIq}M*Q?Vo4_6fOXcSqxF zkfj;Na-Ec`lQKwaT5Pt4dJTN`u){as-dv#=lp>Q@^TC>%GO@pD2Klvk zW#8>Psx$DqYoU3~)}KG!K;vsDV`%s$lY9x<<%_q26ZL* zh?VtwjX16ZKdeMQISjiSez0CKO*To8bic_0S%hKUgmsB3dnuLY7o|mVxj`!i|ET!p zs;$66A+S}GhS{s?>LkbtHzg;%3ZG~|crThWqX(V;@a|Atxs%GuHe7_ym!|E)uL;1? zmk#iII0aXsBRt;>?u3DX48A3pfQErsN~dG8gsHSNXi!4Q+1$JjSMEF@-Ev60BCQ*- z@MT5Fn;1*9#7BAlj@R&C2X06rMgwEVuuD_4Vv${P4FsUU^op+hWOy*`o!) zA73=kj^RKcg{mDZQ$8!}n5RF@z6~t_>J3yB7;l!Ng|)^koRZUH_&1~?fY1H& zI5Oo1P)XSX#CoK@MVN)yIQGvu^4?{cByVZV1}+T_9Af5P^7-MF>R+HdKQ^DFurx0X zBu1+GI^@^Od*gkAmd*;gj8ONkxghXW;pY&Yd<1KeF9QuyXw-oJ;c3qyY3!FpXMhPG zeUu?F$p`iu((?;KJ>6=6q`Du(p`)oW<#q!x=!i)r5GV~~5qjz_(A*+}z}Ica)-;nb zHmH?GlbZC_fuT$LY(Z|64G*dOix{JM)Va?yi<$j*OGAO5;# z5xWzmtR<`calcxYFN1aPhUC*@=K7A8!=Sfq>XpO1G{G;!Q0$RFQd~h!d;J z9epK?%7_E(wS!CS7^Lgt3Db=njLCz5ckbJt;*}n$oAZ<`4Jrj3q)^IuZ~QSuwKx7pCTC>njYdmDqIN;rVIdPi>XZWQA#7ECoEN z$a(qX4u*(wm-Z^I({Yc5lcBx@cok;(d~6X5tAyT)m#eecI=1aVv*d z3b(s>dWefdWYk!JEznL2tv3Gy8KNW^QjkcXM|fBOZBFQNjHv}*(Q{^@D?$nqn^H^$ z?awvR${^vyborBCKGJuu=|AX6rIV9W?G-H*&Kc1VGTd88MX1-4P)!gAdm3Zn~t8UgWda_^nEOSR>AGdH>PY>K<(1(DE zxyG838mZ^eT5(G9GuVgTBl=Uk6IhKlpy<~_|B{pID1HdE=aKM_vl3psJO3^-wEWe{ z+3#eOymtWA>k3dKSyluMPAH{2H)LtUL+g~>WKl;*@PrSzn%a_5b-4vs-$%O$DVxw6 zQZo?9rm|{i(JSd6Px<2~tWSp{j@IcVy(=!b$_}V|%fBYZ^wOQRK&C*Xublo7L1K{27k_dFWJr%Z1@oObIEc3d1a-o>q9*%D1T4jqw-%Aresd&R4%fwL`B zuPYRf-^6fAib$uFZ!S1F73x|_xy!Te2~TMQ@Sj9SAPiuoaw!Av*q2jo`GPxs42VvS zUDkiRyKGOKU-?n*XMpt)uQ`~mIRw-kD%~8W-TaNBhc~B3^uAN@v~Y{R9cH69a0v=> zTu_t%ZtjQcVY$g%m?4nFo1u}U(u0$Uwg(rJN*@!A Q49U8aHf)sfMa~FHsI=qF zDshZFgjI_jby;9f5mGt4bC-}%VD}X97i28h9GbZO*@4as`@j%eB;Qa|bl)!6J^SeS zk#ESpt=Xn9LVXTF_n5W#Y$ZCX%h6%Slu9k(T55_KHrh74_&{}9>piXRN!co%=CrPI zVVh1un@L>#P~WpF#z(%)7(;o3{%b!w{Oa>WEuD_21Dao*r><@W=T?(>rh1K&en~Q_ z)%F}oSoD}~*%e>!2=YOC?hPw7=|>3-FeoJu*B`W=L430y9!O1G4P!=!hY0zB+P{io zY6qAw2~_&zoRRIVp%N<0Ew_EYAVu|O;VFgFI-CJ-V5||PIRhZ_kThcGU;5A`{3+F8 z;4JtWj79PZTmz;72j9W`mdZD>nRB6iawug2*Pl26|HmiC``xjU*8XRICmUK<;D7da z7O(~btHGM!U9h;tQ}DojkQf{7P`g$}_%yh~sh?F%ZC)LSr81Q>f23|L^f3^a*30c66#YBA?alii2H8lx5m z`}AsbUI`(e^NPj%Zr5SPAeuwN0vcuhgPvFX6r@87#1Aqh!3b%(LY_vkBhzBiGgHtm ziw_h6+$GTs<9o>3< zmfZzlcl)5e^6AdoC(;3B=%wCH((vsxaN*bo}vi zohh})RJ&m-GB}r@6akguW1b>nu08Bxti7TJF*ZzAv-4{*0v(p~De)qUNowgAR6eo+ zQ3L_9z!HzT@ru4_ax*@zK=5=iDrsAdrqTm;?Yx%KEKDe)s=6Hy!wthLO$bC zZV>f%4W~fE916Dv0Uurq_CYLQkO_it3RRq;F>)Hn00GOO)!XEBSz1I~9sDR%=42R2 zWmmlSDGj>LI73H6R-U0!txSI=AbR5I94@;JfzuJC z%Z$kj)yMJIEn!?voO>7B-(b(iwpr3Lo%ZE$SIp`dl6olD6<0|>LC)Qy(zHpaadMp~ zD&;}O)fco`^fw!_w3=*KBcfqdDk(uY&a^lMk)A|vkIN=~F@{}MkMonR&tX1>T%><+ zO1eq9LL>f8nE66VSo)L*LHJKGH71`G%o%JefPfUzZ|Q8W5UR8j)1ULyiCHwfhT1Ihtzvp)M^liTeXHybS!s*p94xTqCP+XQ39>+}=IE!X zW_X79^S?KNdFXrr~X70s5keLnnErR7|;gl1QI&Soxf{wk0&P)B-xn69qW*7}pNR|IL1 zQ{zF!QTpSL?0c^U$L*S*OE5N{P8vyP=ifBOd3@>1)QEF| zi$%ulqIHG?xiG{nO}*WihIxaRH9m=~R*hU3)PB6itozu<`)8@(Rh>Wq%GW8xCtZ9l zRXtqP=rUnsqRoX=^a}_DWia?@GSNRCb<&3;`op}hS+jr!5Hv#0|M1M>FwLbFrh(mm zLW55~Bg)!0*1F^o^j-rXgD#(h^AM-lqEhR>( zb9k2qs5CGVxZTkg--Ourh!KshHgrv}-c7j^yf9*#*?vc(a$q6zSV2EcSwGEI$d0Gv zy^Op}zHM6R<7_?(m2hQw9ihVMdZigw)mPocT?}-ZDG4d=sl`n3rL&O#aGPz`N6#>- zeMl%>?xSN=dnMqoScW-m*+-VRJH-OUiapMl-4 zD5;LIo~lmGLqiz~Pv;VNcp(kqp8@gyW%6{BMg*b#&7DAQ|4iRm5cc$c%pyRtEyU&- zb^_af1u(yL3gV&!0tewApN8TG6UTuAC5X{40`t*-25KNh!GNxUZ>C59)aahmn$-(l0D|FxNbspAfPMiOUNrOw7Wiz+DD!_cXO}J}451*w4UKp6 zKD;AUImP7|3d!CZkwVlT!^u*;fs@~5k!?A95gwx ztLD-&RgSj^;O4Fk+}iZX(vU&(jZtjZpxwv*LSiYi^77s2t2>lBxW06YFtf@GO?vnQY3o0l4qCs0C?elP1wdHuE^SwUZH~r-vn@S*ypw#DY0quH{9VNQuNG0F$ughyu ztvv3CR69iY2lFP`amCuWVo zBLnWOXN4=iw9Qv;k!-P>?;WIwhHP}tcDYY8of^$;&7|hbx_`ilpAgw1q1Zsf5(*^; z{Q)I+NQUU&8rb3L3$)I!+JYeZ%$QYlGNP%eQ5Sy56GF3+Uwv-0p`vZgQ)Cu8!y^HZ zS2U;htHjaof-ikN8Y^rRd2`dPQ&XeEd*2O(5*cZhO6zO#v&ij-Vj8j=KQ#@{8ueqKsbuY~E!wPFap5Qj20Eda4;C z$_Jl>;%n1Rz>csIM-NAN3;0QLhhvc$wa#T0b38d8f&3O{;Y}F@-P5GE2gv(F2$BIq zUwcE_R>^HuM?RI8Xuq4{09cT}p-NhE{wBF>J2)ClkKtN)LNtT}G`|5H%OigRtRy3R zn5JFu*?P@tnD8!Uo2jf~44IcYdNNx)?=ws3Y>v&7Cs>*#9~_rI{)GK;HjfJJ8-P|? z@cqHO1pj;;&#%@wteG1gBFOFc#a903#n$`ZON-$CURR%1<^^zM5I~0Op6eLwWO5JA zzlV+LG65Id!(`Hc3tq#Hn#cnWsL^+@c(IY_2;~sNx`Gl<;D@hHV28`7Bf4NLfpOer zLnZ(wgiYe#rHIb-2q&~7Ln%eLK@UH2z`tDEZ$)JO8moqNrcJ5EDaZdc4!}jtXmSV> zBIr{urbJm_Px9`zrA}A}&J;`h`tYao=N$g$X{Qc-;a4Mw}oMCjycc|g8~A^>FpX~cwkDuiDuIz5RV|)Ux$$O zLKTJ8Ic6sA*}Li{gq}VG3hr|%OceSUl}IOeE`pv^C37DCqseW|l^o)Ptrr5^ck#j- z`Ig$gStq3XgssyoBK-m;Rd{1DYJxs~p;O$$HdO1cUQ=BGw(SctpaBQ1Zut`emn{5C z=!@Vl#x5Pg;U=0?RX#$L7g!6KDkQJuaLa z&geR~sXLGt&QW3p@w7dG8rExvaUKeuKzc1qE=WUXJ# z5j@$$@C|}MPcd*+7ABK+%-|$7BZvl6Y92?#Lx)qO=JKkCWQP1AeH8gZ%VPFA#&P~9 zibv~f?Kq(#Bb6!2vpAR(Bp4AZG;E+QEihI`rvlOBD;G0l{Ofz^xxqlb`GSAetkdvF zAySn`SmZ*~&sVohLc7lxMHw1vMWs=`f9|Y7e_D}-izO9pZOZ7u<~{6EbO0H$^T?pm z7^M<7+-mM3g4=QLf(8@R>fqsNweOep?XLzkW_Z&UvJcT@{WPl@Vx$RTfx#Y{Mc`VCs*^Vre0aLfkA< zSp`yXzV4^Qd6>hG$+HsQ4m?(?92sESQPiJZH(nMipjx*pkEM4RBP;KYhwE2VJyO+L zVq(2^aI+)_qnVdYt4M_BFDnwEA_=OjV|qC@+CoDMT2=4|lP4aDf6J!U+h!%U{s%E z{lX&9+Q(YOAfAV7ps}Lb*GR)hRa|T;9k|I|F`hL zA~A`(W>U2U5k6R&qC`d)VzK)O>HC-_Cj2H8=ks_uc-~eTK*Y`SKUgH1ETkNz( zrLSJ)30k;$-P-?YUaRTCS(@s5-lN9VWn-=9UpYjhW{W5q5st$ib-L)g1X-`5Jk9g& zcCnz+jkEh+r05)*=oqZ{xD4U27}gft$<_@%(PdCprsajJ1D4+8Scc`_PdNRF2`TMuj~z;KtUP=r84091Fzb@ z1ZD`AqWf=+lkT6>rz*|==kzH$FM1rrf)D1ehRB;Tw_qx2x+rQ5!ZM_?6qqt`4KNiV z7g)Sg!S9@k;9u3w;&C9f1}fy^|A+sM>ko$X|LsiX@Q5Jgzxg4ZHZ|4gzt5m&J>b?H zU;%HziP2fXnJx(H5a$?wzWHxoSeSMOltGVQobEq9J2&v*UdeA$;=g7KkdC9IX-0&l z+~A&lrP7yV*Fh9U77~ntSj?GG9mSaBo$`rX_B4IN5-60+D?*!*k1&JRGAw>B#p@Tz zV)9xpdDu1D>~A6ksMl)upH@FLCoXuM^1Xm^n9zf#aK*DjiXy>ptMF)Ml)*YdGjHAI z9h}5A%qZhJae}=P_Zxy88E>=k3f%DB+40A?7TwD4P(LpS>Rcnmd@v!>*kF6Q4Ey+$ zQ=~0(NSpQKWjWA?3#WgL7;P-i>9me0-8kl1R46jj70lK5TRLbF3xx`E{R#X3t;$12 zH>oWvlFSAl4_exxZiTk|o2Ob^8;YkogeIdsR;s=rM3Oz@O)Q*r0Q^sJh`J6YI|TCw zm4U%jFy#<=J`kq-66-QBNGCA#mI~q?JR`XRa{=%300oy4WmM>g;NV#R{sAoCL8nF` z#8a*Pq8 zhPhdsfEhD>VI!)P2;mr9jE!@$hW^-MS7&D_;u{uQ*IQGW5n|!ysEqE%CvlSWh4NkX z`-ke8PkG2tX?f6+rxqBD9yQTrTkz6RsVW&<+eGp)z%(KGi0&8yO*j!b>nilNtAoxc z*Cdri?f?>oof4WMbbL*4Z{Rp|HNBz;usq6zwU51y(SC@ZJeO)x4t1QkNoyaQWVD-_ zuMZDPKfL~l%T-t3W%^!>|2b!rTkLaxIHSHqD`)wvb@_n%+`4U6yqy zCALOmpOhfELVG3n;{gu24%_j51S~VJy3UM*2Sccos+XLoGt!%yxK<~HI}S^aJkzVd z7l9Mt!^3Gu`&FYNoxwOP1t_CDzm5fwl`=piIQLPZZXtRU!Ra5 zmn`=~!wedO{exvX4O73Tfn&L4T1%WHju1P!YLjcRe@_FKWdSVjXxIy)S zAAS-&JRnX5EKmbJ72iLyUt4S!sd=Ln_0rrR=24%IPj#EccWjQW(fIP8Os_xLJN60l zWkl7LS8e%RoDN#~isFq}aiX#HQOvv1ROk!QDtV~y%HTcrl~rkgZGBarjO#Fy7!~6I z$L+8ODokPyirQ2V?5wyHr`G)D+wHV>`5gst^wZJS#Gaojn@WBt$kUuJ8dJK1uIjTt ze8_=8lcG7lOH3pz{wLA9EU--JRVMtg>=^$oqTyH#4K(ziFj}sE{XX{td}JVqVVVCi zM2LWlcbFsM{qD~Gf8%EdWCtYoV5eKibO(3`Omz?b4q<5u=a80dVEe834*2I5nCpHG zp7up&G?qyS80!lda3~&x@CBZ_t20Q2JfHsrEIw&wkMO&z>zEWw1ntC72r2g;OnJ!u zUTP(tZN|Va*nI^D6ka-{t@yW|R1>5pwd_(!&LFRlMH^E?P|xGUv$l5cY4mK1&Dd>h zH|x2d*KPKGE}sG3H@_Ag);k%;W?M+V9gDL zGWx&`f5FlN1q~l3UpyHZEb{!MwJ0@z`+Qhs9*FXuqTim;VDWka=up-Q_%e_IQSYyS~Sc= zywe06+7bMVV3p3?FdHUBd_h{b zW#uE8p#u^HedAkMVl1J5M-3ZJ%^V{mA@NAwV1W0aS^&Ga2Ro#!tEl}pk(SI-uq1V6 zQiDd{4*h6KpM`-i&$6y(xWG82q3n%TktaxqQq5p?&R+$|LzPW>pVUZo9bN`~lxAnG zmz>&E5TFsLIBh;zWD)d;!&@xWsYuvso$7!!b(Dz4^oi8y3fVFL1wxL1;W}FBRxz~h z4&?XP{*%LTJ-lxlFeYl(V}g!kLV^X$(JuK8Z>ug=l_it(6dp1F@&=tod#OfR8kGcY zXv!Zl7FPsdI(S=E(2M|wif9X1^I0UMXZ(J@h&f&Yf>Wq-k<&(bI6&;4$fy}K{vMUy`@Q8&q# z&C)fW7aUQg57))4T>;k9oE4zO2Q;z^Av+H>SOh>;xj_bHBEZbj#gN4c?M!8OsmL`v zS_XeFi~KA3*gt+Hue?T&`)EBL9cSRW4LDbOv48kM{r=S}OOHN=ff++Lqca0pVLQ9Z zk*EEU^H};`TY1gpLu>mS*GI3#e?0rXHIGI1e$eTf)R*DPe zTbwLbGYKZDgC;wIye!R~Wbz1*gkUhks2UMlBZzl%zB+14jMUh$;RM%>71=-20$?hoUe@>v>$6|gS6AcYI zXe{^-#1s(k3_E)K>QLXH0`uPh*C=RrFTG=}>JFNMS3OSh2LWB<~(vBhB(i%Z{@ zG%8p~ghaz~!I}fG6)2K6<hxJrq=H@4xLh=u zuEz=&o7IyR+2Ko37sNcTtO`jPGj~Ir)1}hz?FIe9&hrL)lIHlz1+LjY)ptL-@H|p3 zb}_5}Io_{8R z7x{KwLM>VwX~la6itoqz?Z-^UOK&sphcocjPMHAFy^K(xg$!c<=W7IcnIC$|9L6P; z`hHELrNYA30g14!IP+~85D{yR{UKvC6KQBJC7edgtqy*0iRXKou3_vSm@7dSE#5Y8 zRP-;enF>S%w{zgBh{%;VC$3sL`OyWxa!v%Ys#i5vOs%;MPOS~{-rS^%uZlmLtm4x( z%zt(!-E~d(={cXg+@}&P4tJ$T8u*5|CX>TuJg6*Bs6xyLF9~fwvr}L*%#qBGkdu|* zrNj*)QE(m25Fa2kk)2}kD6X?lQV%pfSK(9YVswZl&1Xp~tw*y0s03!d7-F6nLakpjhX| zINBa#Ei9txhDaAaKwpnsx4b00&>@BCI61)&vNmy;O={Eso@Hy2NwlJKkW_o!p@S{$iS z2DC~|a!BM+`CUC0OeE+>nx6{Le++oqASKuY3gWAO>Nl!KqMw*N#K!w<5lI!%F}tNt zM;ChE7f&ca;;3uhM*4Ct_0r}mc2H_m>JHjX@PKIlvy@~qB|ao4fyQ!S=g-nVk}onA zJGJx7bdI)KQ-mQa-zlGzLxT`nY4!&j0vyKGe@$`?oIHzq>K(g}h;+u8@4yg_gBtFF z@PT-8jvYz&K#N$mYmSHMSV1}=h0a|tcKT*BFFX+UO2T+BW8riw)veLru$rSK=fp@d z(ZVg^gUHXemVkU8>BSfawZ)P+mgniWx96_vi?;_kXv2hUoB|yMR$UsHL6=gvVfAFDvEk-N>}8h6C?o4mml0U+?TkR4Lr%dD&}hvUS+vUMVEVlwc##O zsIXu&B$R}Z#gQ5hgEC{z6izWTE^IcBclA{3Xri~KS8^Dw;Y%pKZ=PplN`GP6;rLcj zKX0DVTXi5ogkdxz{F6!-2^yNvinc!p$lRn3B?L+I$iSW;Iu^%g5;<)_NAC`e7|?T= zntvJC4LyD>qFjCdXq}GYjQJe+1e`?D$Dh_MDT%#E9EStdn^>) zZE7f>dU#9|x=T~Id$QU`Hwb&H@Q5+gS~ERT@>gmY$FTcMjn%pNK`?>c3A8x~o=LUe z8Z{J=7 z&3qfg`@Nt0p6B<<_pZfq`RCr}?CZLY>pYJ*G7d*oLKHVQ!E^KqGUK2p6mDf?rykGc zW`fmPIinY=Y6aKdLrM59$twpH0fsXqtaP3G4tL2If)bme(uA|+bo$>8^&akR7IqXA z%*A*FJQU@x6*#n8O4?8;rk3qFzVU*=KsawCgEEg&kA3p(+Rn%a$>p1S-Qk`+G|gj= z($llCKuOtP9zq1+g+VlEjiHm}igNrj~lE1EkdR@X{-wJ9};p@-&r zKXGiA9wDllp}PB>BYW5ju#N>xdVv0lJ5G1D9~#ppx>prT*p^jZsRd#1sd=n!U(S^L zz`g2Iafn#6m}wB(JM-H=W6=(O&I=9EQIvq2{Y z7XH!CR%y5Iu|IwM!thn}LB7~4Za>dNX}5ZkoD11{`FgK3;znrYsg8n>e<= z-Y7Hqh?KakdDl~P{Xr3ocY2v)ydTnv#w<`a;I@3hykBnS^}A5JIe~#(EFrqgeCoK3 z2zq{l4ze{((s+a~k)Kiw=S?@#f?T{D>EtC93ypmN6O1o|Zx@(_S9DR>K?nkxcN9nQ zdBjp@6%6dLv?Pp$=%o9hO@`(X$>R^=E-)^=5AoHDQy{NbuZw#Xm#De~jTqQ%?+XrY z-e~Nttb*OhD>Q!gY~fC#quI*a!9}glEc~fjUI8Lcr0P3!D12V{F?~;WblZ*%0Njfs zZ%mloWOIH7Nh^rc<0r=fX=&yVRM6f3@ZL$KfK=~#Wt3E3I;f0d;yJ?eKJye+AoF-) z-ePQ9rKi2f)C$qd-C%+mIa(d2b+v#sauut0pGnifZ@|*lHllAg`FjxiqC9ar6@>`) z%NE#eNgY+nl3KDs%L16MXz|EtR3L6C66F z#e=M^G4;=gUCdxiA`EwVlJ~VH+D}aOr*T!V0HwH`F5kWX2QeP24UFFnp&FGHSPQg> z4@6i5!m}HKvL6IZL%_4xns$zP3pI6QrtuE}9|sDudBPLeVced~=sM&ep|Y3)IXrZEw);6YQoGNtcRK5_x%EKCgDDQ_ zS?TuQhox0#WMg@S1a)8xywHT0Zm?UJfGgtf!`qd&8W7AwN9O+96jIg4F*}K7CRMSW zch`sCs@H7ZquJr^5ESzkYp1-*biEQ)sZiY{1^*nQWyS$l?h{{TWwb`J&&&>dL|;FM zlwHyxi;RMs=HooGO5wB0;A^>CEgkhB%N>u&ubK(1yH z!wWz3_6z)ZdqNGDh4v(LjP(zD_tIw!9raD#tuOCZ71m5hRSl8{=4JTnnL;mtLp*YM zuqdg7w=M?J-3jH8=+2^}CladJDKg8##v_x*J8Y7F>3flxIh11D*MT{#DD*N$8hP;W z?3GIso$+tT~^i0_%J85yc_p|}%3 z&*5X#(|00&!^fJUB@DygM_1THzjJ$8-jwX-|BRXH?(aLuXfR}3V^^>(vjkU(`YV!r ze;19nud9ZpJc!4s-N9N-unw=7wUTr0^Ax$O7E5Tvu*sh7Q=wG05o?fVGf&%8B$DBAb9;k@`nX-!; z$J_isoi7lF0gC9b86ECX`M&q^8H2hyx=T}iSH2c*kH#w2yAcSu< zoUz7;FFrsU=f}{OrqE-@I@$kS%~<|sPd1xy%00c-;1?;Mf(%||xXW=ZUPj!}RPKdi zY0H5NRbB++`NAQ2ysT>iVzJqVG$z@>_GtUOg3#so+5^hOt;6UI!|VI&8DG5O1z#l( zdVKY{@oD0ED$m#X*RPeYJybT?>S1?CC$G+-wAxp?fvPMhpgUCj&$rsl_$#=U+c3yQ*=`-s@-#+KAE2 zLNAj;#|KfafePWKB1Q$*@c1p+y3rV@a0@#3QP= z@oTAng469A9_p4?P5D&snBLD&^Cunj$K>@GAE2=w(gLBX3knbpJ%{bp?<1&Or%xE5 zXaG8)sxt#0AwwrTpEs4x&NuR)=9m|PB;ty-ClkL8G>LC*h4Zr490aov&NFw;iW_M z=qO+x^c-@CzaIT+pRl0-?5cq9*$@Ep0x$!RxBcro(c=As5dc2E6F!l^^JOH_8b~FM zEYRcZ;k)>mg-|>^Dm#4WIhd!??@zbIuxV0UT*~ze5*d_zb672&rR3cw5*SQ*I!yA+ z$EsbA9q}%G`H2jG8eVBfq+#7`jiOABD4Ip^2QK<2NkmEOWR70`(%Qyr{$b~;Q~eFy zRuL&KQ|=1O`-D#iyF&Og5ID~N13XfP-w8(&2pD}}Y(|{%p>8~( z_C@t0pnx~$9WS5Npz%6kM-rX zo;n*H(JAx3LiNU|5XyNx@&Dr&vi|EQ8UeL{@3a5?Cjwyti{`(ta~mpPt}2SKkPg8I zuY>gY&vq%axl2u`9vc;iI7e&d@25hwjzG16z$=4ao0O0aNM7Hg$iSU1C5b&Hpe8sQ zEu{flCqwhgf48!d56^xw9SFuBhII%KL8k6N;1)+{X<&TU4qtdhP(@H}P+CxCP;5|K z5O&dca5kJNDCkTDy5P_2f$H^8fdPO&{->?b|Jlg|0QYoYClmSGPDXXkoeaq|g%)E+ zWdZ+Ae|F^E3x>i`JvEA>TKxBv=?_-><@aw0<>bhe`;Yxw_t1U5(~;JzTH#(uRxsco z5B;*ECX{Ge`pqEAH7G6TO>8GAL?&?Jwa9N%4U2z8VL>kL9N`zt1JZ#LJiSN zkKX?H%1|6h21i`?doQg*AZ-esglO67# zc8LEuDEG$Sz~9FINx*pc4p4K%#6m`(9is3p;wC|Se~b#??ZIbn6Q9RXjOvp^b>yEz z;0F`#g9)B6Lw=3t&eZRu|B{ZU{&(qk5SR5y3=S1Q(uIP84v}EF4Tf1T7FHVrJ~=-A zDul`g(3C?220^SeRPd-(YN{X`>D1@oBqU;vfvOmkgin^_g^vuHV!*vX7BRjJDYkP+ zU~EU)157u-E0@70@ocM*ZiVlor~oQUZ|GmE4wqlW(aF=+osnO~$s5E!0nzh7GA`-YeA~98|eH612*SD}FF9uK~ z_3GweC^!>)g`b63Y`_Hy%m0&g;O$#RnIX3c`Q!ocbI#yd-Z!-m%yWEZ$Z)WQmUv*f&z623jKLM z=XPKHi7zB#oirTlfzAtR^kLFL5!POZUm|*2jxdFRimecvS4@iLT{qer6zCgs!)Hpg z4U24ecmj4qr{bdKTivr^_Z)pHrd(2HB`Io;d`M+R8>WhzJaeOIKhj9HR@V(3#5KbT zO5SkaF1&SQ@j}Y#o zY{Cr1ZwmH0SayNg)GR?);ytZsN1Iw=iY`Wq84wfG7~eI&JJ?mijU+t zsC@f2{=og6o+L#{U2y^>m6+P>)u0Y<(zI+}(`o5r^e1&bVW-b3j@T?v}OS|JZUL1DepN#Ev}+&`mF9F8ALddw}SWLp%aPVepe!dnh~m z+L3@_y|u%&K;$WN+&XO|ftcb^k>Sy_XP6LnooX+2bZKP2v86J2PM4~m{X&7|NR zD%GrA8cvk+E%fCec4FwuN}`rqv3XT&O;j4zIv0;RmxkKZXEmy!H9mh<%S;-@&1>!L51RKHvt^;dlCb1Bno|A~{!y}0C0CEuy9iLXv!?iJ^R zpsEonoG1S0ysmq{B0)fX4}-%LUA>6zm|Kttx0d}cq6UfI;&zpxjQzQC2L zchOynFC{cSdd`(37g2G6+*+t9H7K?59jaZT64O;^Jx}C%D6`d z{fZm6?kb~ZMfvP(Q}>qE+s`p!O8l>P3F#Xzj=g5oP~u*Viw=3^t7O3$g;hN6V((Sv zomSNEn4|f^*;;Oku7L0g_GMYMT_w5D^ov=~=xXu0VMfiA^A)M6kT0OC{=cD?mwiiT%DLv4lI8IbP`*5 zrWGO&SEmSK5k;&}5%LU)tkBUBPt_=r5o*SdETCFaI0^)@F`3EbpS9>kFe9c=eFrF@ zrJ%^4Z|N`lPrceeQ=Ig;%?jog*_-I;*Mzvp(7)pTJR9iHlVL)_w)*!u?uF7yKWuyd z@VRAUuH!VGI@QABbBVg5XF2*3Qf#H_Py0M#U5dDI8J>3ZeB^e%Zm^TbZ7|{=Q(T{Y zlBQ$u_>*R_?(O9uu(Z`1R*(SUweFy&mOYO?@5oD1C^p~eFliqlMNmGLgop3Uw6n*-%TOIuiWnpxeYYzA2&r1D*sBs@o}HQ^ zRby23qsHhvrx&}1IZ3`t#nby0AM{+GbTjp`Vi;ZNdc3Kw@G=0t7Y{cicJEnA|p4iZC!W`%y=IsSL_b3)ImI9m_YI#nnGVF~o`9M-%K)L)aM1fe#>90TJD5i^=sI(cB=GwyeqU5x{*hTypP zT+A`gN{;bRmiXz%7)_8gE6=Mo4+n&QT*~)X`am5pCAQdbtEY8^fStTkJl5mkYyYUq zy4)8Zeo#J4I^eYBu&{s)7#3dBs2-?;a`9uTa>92q6Q0@EbLEz*mPji)9WO5< zqOj$oYYv!ai3q$9_<-QYMp@_6;|;XWUO;bwRuo0rfi zFF5MzEXRH+nB*d@n}g;GOXJi1kDShutWtbZf|!t`G$un|AdT!8ZS!0G5{hD?GDts< zAE{}7#VNyR>H;VF$2sE4D;6a4KRXeAr};@rI@%Qy+RBa2_gEO1fU)qXdvv^;2&|{T zs3Fbx=NGHhpH6R}v9(jyqHRwer%=fDy_yiMh^35R{(k5AkJ#H44GWyZN3nbRhXJj3 zeC|5>)`>z6=ZFvLnf5VV$s)15OfcFPT3%wqFHDh*GCaEF0Qx-G{5)~@xlHR+5sls( z-RJ%{savcxdhDUO22&6UaUtpn z;-xFwIr?vsldl)Ic4owWeJ^Dr&od+8s|Ka{Y$yUZl>R&|ds#8+4ysb3!r14a{i&-HI`_+hl+b1YAai;xsq^Nv0J zhNOLp?7EcR1B>FwUd|W@9iZI5zYf3er1G%f+TQ2cO1Y|R7RAlBPYzK&C*v)lt~l~m zhv6-9{pwb$%b-3{M&2ct&bNHrme|=ixfE@N34TmymISVr+F~5opKJrDtF=cFYE~iK zF*n#C4}$!ol~wCQAeSE=Wxgz*b9y+$tl7mha(KVqcGG-or&j7X>%*spk~?=65jsap zQsC{c-aA*0oa$fn+P}gXeEzm_a!9$lw{3;mP}R`zM{>!VBgooI#Fax#AXOd}JyRS7 z;D(;Vk`x9TgjJk0-+{v&h#xxJi}n8*){}bi4>n_PBQ_Qm(Kdqy9cTcXYBeZln*e`R z7C|;EE6}>epfIHP3`@W^5R{e}2v@krn4|#39KtGksiP`q(sqbFR{IkIC+p)Tu)yWO zye1yXp~C{todsdFp7mdkQ^Qdi1_Q|MU*P6EnXtAW&OEOJ)hfy_kC${ez!%(oF4VT2 zt2ZL?fo{3hH_Z2WbMR1yCV65^ zC8Y^%CGbcehrII&ChPoCzBD<>SW&1^*#= zMBDi9s9}%fMqJ)g<1UQZNRn~cdU=e2`z7=iss)P*NuR?&7zP`H37(_}VOhbL&mvM@ zg8nliMIY~fmGcE31qxUovKRyoWf3@e)Kn`pa2vYRM=nKZ9}fx0Ez;|=L0T~Dz6%!V z35@rE|I#ul!Q>pmbuY3XAwj8Dhe(i81=xBWo2}>UOA3(-L}fe+Od06F>6`Ghi!lS(rL$kmD%~345iNpBa_W6mlr=I-G;2n zv~HQM_a+Iw3@2*n3lHGInE_Ql1vOj=$ml+n9=WlZwh>rC?+4OL;+~hudHwlSbJ$`DUpAzXiwaBt}L-ju(@>)C0mO^HCZOvG9wF--wzW zPBWeU`M`id64v@*e13T&1K-v&G2x{R?2g7d!MEUu@KxhcsfH;D)qASmLHkkdMVq(w zeUbhu^$oRIWZU82^#viRE*-TLjBelhT9QHKB@ekr{m=-NKuDRHWU>1X53J$IV%8;7 zCPE2!f0A2pIZL(+-%t^0485wHw^gArM>-!&BDP|zRshLpai4l_Pd+F2(Stut#`SAy z2(8gir-!1BEHCt5%9MP>Y>dSU!1ggm9%C531AomzHg-6Ajk@`b=0&!2(YmZd&^vCw zL{(N4J!QdjC`fPjzKc3h;;ixWP^HfN#0<@(?Ca?qzkqj)rcdkO)#`SdU7ju#6vyKC zP^#$>1(Vy(cb>TiK@8pan^12lTDP`G*x}z&OQ%b-!DBJjWBniOstO&o_d{;0+@WsE z+w_qE4#k0wLoo!);(-@?8#tcA9%ADbC$f(Po} z##u#Qp&!qA%jnp2X?y+o12kxB>%$qE!%O3`)mIX)k*PVOxsjG>UA=PEWrgcVNhD{} z(f{gTb%*0+$ViUXDyk}>K<$EnXYHSkH|qNUw?8=`*ew(g+RB`=Vx+%v{70@^UYvJ> zdL!jh9=Yb%?P44W+|O$?iOhRRk3OwQdyg&FwO97YC#BHeR?{%`6pz1ZUs2$!X4R>e zNVOt(-?inZQ-oCQh*5NAmQ1TH(rcVl{1*+qK>{VnZF z5-L6p#1fZR6L}3=Sl-%65)>zy92+>^ zniAzc+9ouNTMR4;WP0za%p8BKla;Vj6z3x6*0bSFR_m!ClZllDb60qxK)OM7mgtI@ zO!vP(8khhIF5SCknArPN zXmF1Dw|1{BybM-><-so%N3ci^K5(G3iqhK<$a+=%c!=WQLX^1reXDM3viG4s-!x+> z2TEiSwZ>D>R=3!wfu_jtixQvo3riq%9HqT%Z|x;XE4=P2xrz22e2D(`vGcsSC-*Jh z5$uYgxeN`vwjGFFzScq4@jT&oL+AOlCk@Lce#;^Bg>Ms#jxK+ z%k8^^A_5hLD#%4p;LmTvUcIM8Mqu~xSm&<{FswZ=K0Xk3 zBoJ6`VIjK~5%g}IAw-Jk6YSW!96TdIWVZ_r#h;r28Vb!&)&(6f_+B&M1j9i4n?M47 zY>pzx90qWr{S)1)-|BMb zR5;kD@Ws(>ac}j|L|EZ*sO9kg-0kUl?5P@2`r_VK$oRNV=8ubkBOSSGrkgU(0S}xR zY=$(wl!FZHpKA_1Jy-Yo}z{hpfBMIaN!jYi(L&PCGXnhfF0fHa%jt1UI6&OMWJGQsj zZAR=u?jMFI9aEXGz(x~*4jV961gFiNu|h&=!~IaL6%^N!#HTYiONGGb56{?#+PA*z51Cl!M(E3oP@euLg z2!srbe|^>>_ZC+^MD?2gN9bAKdv@b_NK3H*Z2qfK@}f|tbsI+D#)AoT3ZD$-X5|`4C^Hch*?e^P+C#byyxp%P|0?; z%TeLy^*Woc!tdVQlS<%qxkj5*x~pyV{aKl>2!{J%0#>-|&vzmX(yr6hvOg?J_yqiL z`KRz!2iI;0t4RjguaStX#JRM7;m_Ri@Dkb|Nu$4@BT7P-sJeS0`n@A52k{#M)|n4X zIHneDh=Yc;$p+7>AH!eWYrOjqRh3XcPv|*(fBxso2F`%9)%^cU(E!i`kd~20*x*eF zR$F82FQo$7Z>7R&g<(6Yr$>bf#r|CJK6%0?Khc=tQRBYeBA9!E$a|HjOmq_y_Lpms z_BhZR*&>!Gs1_<9iv^M zg58<=zvQ$2z%K*e7D&x;87cL7UiE3ttF;C~vAj7`y|Cj~_@y zg=9(yjPGCwiMGL#1TqdG+sHu1q%%`e23uD=RIiGn*9rwDAAfpXiaogtSm1}5yAf4x z;q+i`{rGZi$tL?+`Tyus9O8y^w{Ykr$%JD=`qa@G=EB~-RZ4P0$V5n0(qhsY%NR-M zQ$;WNL}~wI*YFUeA+#36OL#x0*J?U7d7jjrPd8!^*wK{Y=})UbqIRl$XA zWFffp;j9x1(-Z@~!JQ%9B=V)cAnlJKMiSrNEq#+|t==2^sxJLqBSx>vL5Se~wG|o@ z^Q9-*e%iP8L3xxqmr)f11&lk7=XvRe(~A*ipE1C9If+3AG{QNij4A@BkwPa5VGCRL z>JwX(TBb%X5!~SG_j|aHBgWo=-;F>z3T3=Ph@UZWK7EBoufwT*?_$i8A-g!;V0U$m z>`>~)%QdG9SUNcz&V(0V+5ni%s9?^CMig?kB? zZ7+JHXFeT%D%AV_ZN=sH-8R~6Pd7j8{J>6IpGhVaBn?O@BA+M4l9GV`RL0o)nY=wPN`hkh|zV4T!%3C$awE^$^&d^p{??}pkP$4TF+Srf_3I;3;uv`5%!V@|V4G_?{ zomj`9pWF+6ZzRAdlt?H@jpa83mWt-T8$A4;f2PW=G3+86kDHMYhJZt)?=Iw^eL=SS z>0_iofce}jYurtNJ<4!vgglB4E`0Qk=SbJgF?C&tA^ihG`jCxChM~=8Apex#Z|5D74R)hv zEYW!F&HQS}3g+z6E4Q`88hdJMmMf9-@TCRHc<=K14WCS0_>*FK-wVM)o@xqlVxd^= zQ=UY(2aCKSug-Z*c1^hsecqG*G^sSe?7qn6sGX>=^+FSK>-xuZJ_<2IRJSI;F6Q6A z{y7}mVIpV0{;zmw9RXqeGd?6XE_&?(QQBYm;moJ`;R64eAN~)oJAm&AzUCAZ&YiW3 zjR8Z4!icKC6~Jg2`&bdmZ15mTEC{$AHm`vqA#gXkSv0J>3s_it-dVH9K?J{f-ah)5 zMNsVuD9|Akkazy+8FEULJh{i5z9%p;hn}fupr-~&RDX-X)&kNl{>}T815`9ZeOaeh zU;z67N8vHjqDYl>>;%nQS{yebb|cVo?Be5Ns95?k@rg*5oCMzQ#06!C%P+`+L+C;< z`(!r=7~m`iNNl;pX;~e#GiGR@`%P3=7$_>Bca8>{>2F@7F*+7j|FA-biJT}jx=~{d zTkEg>HYVP$9-5jXab#}lbD&#vckKyoU63l@cF}CYN|J0=W(2!|Oa$LEmn!Kg4yD>l z^SK#rF@hN%=lv&hX?fe`vNQV9BSfgQi#V!H^WKe%N1{JxM;y%(VBEz>c!w#%bq};O zK!qWRk?>IBK4$W`-Q&7zj)h*3yRj*%rK%>^SxxZEzzkeC-B zlu-1hVNev{@m#b>AUVES2jH8@V&G@Ymr=9;5|g_hZ??3`m0DmmY7<@}JEc>_|J1JA z)!9Mw2ep5t!Kkyri7jjt$$tp*cO|4fmX)6PL0>V=_k%U#XN^y{&jo4So4zvG$dpgm zD~owA#Dw!c*j|=+Hr&u1harjA)?4DSo;FR@3uw_dFeBB=&Rfv#4E1FcBX~8 zq^r5+DYu2keWxR+v~M2{;k;bCfo~TXFwCQTfoD==Hyq)jSEsHe(dDQXXaT(~j$$pL zOnErR?f7!_NTxAioSe33bqRh`?nqb8C(-+O)VKNP>0`01^b ztFm*~-8BDP=dOFWA_OVvp;qW5S{Qdy(Hty;mtwIybwK5oOcc!~(&qQs%36&NDWHTa zWP_heZoldtpLp$8(Ea)8kfH%nMOZ6+Ay9bibseiJkBzLr2jY=R2BWS3#+8>aw@|w6 zDALT13Xay zDByP5V#3_eacmaHFZ4nEi(7hp1Jq|=kN4z$n)KvFnK)bh)LqhTxxL_n2Hb;jQK#%X z7z8?U)Uu^Fimrvafjx)mbiQTECu4UZ#Q4Cg(q#`aw)?1tLqZyNI>u~NhLo(hb0)=n zk~g~~xHGK}eU`-6q$(arF<*Js`5g0Rhsm>*!54Z%@43jbYhJF8CEvbnVSm56+wrn& zkGxI-s`{b8yyww|3InZgfCLmi?V`@4RaF{RHlK6CoKdlOTdhR@jxI!mc&Vx5$jL*X6c@H`5 zj-w-v&?0C(To4s@xqgMqY6%GfHl(%hf66&(-)v1_5>84rkXhVZu4GTLZT56mMknQ3^LjNFRhMl&OB78Td6c3x=IftumAN&u z_ZDZ_b1r3%Qoxz~gWhvzzQK)`pAE0es8wCtB}NE($!UNm*qo-{I4QwDO(Tj^(Qf

!7da=+0p zecfDp;C!Et==BEGc?{q_Q)N_D zLkYeA8~}L%(EG&NZb}w7siqs?G=xirrEXvQyxm^j^5mlZLZKn1Y-6<$W z{PAF2-G|#_%Nls4+cx=L&n`dX&-YgwDmQY_=gnLcHTFsTa%)H}pr>+fGB)5|z&nkG zhWbIhjaZq7*QGRG>msl~Zg_d?*aEq>?`;Wr^&;rotb@1TQ4p*Gdl|P@n3@i{y@(C`aB7->zueu7|%M{u%%AD|arjG-v8 zoe20orYDFgx}4+Hf6E4YlQQHT)Q`aQHhhz8WEah2%?L%95DZlu!->fCk5TsNaS0f! zs1c_&9l}@NGW4-LPQ5vXs5|91pK&Mg-WT>1cC*KrMwQQI_7pSX7y52~zqeDrGULx# zYvBIsVR3w2{Gvkrvr0Q?N?k_a6SJX$t7G*KUv`!mUo*bTd=lot^=ZOPBfGLxiY!sK z*qb|&9W)M+`@t*F%6uvMLPg`n_n=rZfA*Gg5O-myaS%bE5i&>o60`?lcboI$1FSnu z=*#rnc>zoDzOzIJ{Lvi|)1P4~vk+r^`!JsIIJrf3rLr#{uicf<%hYoa3JVXq(}fW` zscS9S>!q~X2EyhFgd;8Rf-j}Zhd7u`m**2|7KW#hM$_fEQifNz-v}#tR&s6fnM=eY zH+vLI8D(&U@ShXsy!xQPQa-sw=i$7y<6~Sfl}mE68V~ZqJi#P9*KTs=IJ{1sKyddE zyj5_X;x5Fw?@~!zF}gsLYI*F3G_Wt^?ya3kA~(bw!IUN2Qm`$3EIu-SJa>G5n85b6 z$?!wd6%pGW@^|$OvU;x?WEO)f30&}ce-w=g%%I6haC*BVQgJRZ__YM1smIZ2#X<52 zDI5z&wMWvtRb1YrIW}%Z#D|2!F$u`uSg=ZQwq+-`OdESO{~xk1rT1uNlrQQ>RUMa`hz!w9#2k_%1urJuyRZBl3ysh^DDUX zmuHfNx`j)V;PO5?S>IBdU_I*qr$xm;zon-pO`@i28l z_lcD|>!;L*BU^y&CtxVN5G<(ms=AA#zTI6DgeeEAtO+Ye$El5|L5ob~W_IgdHF`h* zgEU#SnK{U&Nm@b@IZ7qoJFz};=9zaTTth?FMp=gL>Kd;o+J=xH1;ZbwwmOSNe!li` zPE*Vl^OgPq!RTjw$sWgD`!>Cj?M~N;5=JU1ucHKs3w@2g*RK#Hhfk*3k1c-PZM!?E z8!-Z_UnnX}^&Om-)_zWRWi_BMt!l(P$J=`*EAeLG(L3KCa}867gJD-vIvX-#Nqv~; zP4Hmk17)cq297&)F_Av-6xPo(qTKV_^{9Rt6p%*{5F7vLPxCUN0*D5}4>yG>Z6vBj znuEp_O5WUv^rR)Bi?^r)tb&=rIM?pP4XaKQOL#}#TxG%TVq&ZFPd@q-xKU{OLNVLz(duD`?&NW2Cj1?^vW?%<0ds>pQj!zEfWmGA&YYups5s&CLC zms6ww=~h4KzANZ3aFnJ8dkQ9|@B`$XVku0M!t|O>DP==4MNS0{sfb4?RC5&6w8dPU zn^LmXtHUgOUVrl)!xUvGMlaQXh112CgI@Y|6HhsQhP(B$wPf;TcIPM6?(UQ>j7~AFH^kOYP+{eMHyh-z5^AM|q z@DS@U#UXD*qmR$--ugCffLCCw@UF1Tu#vR>ZPV?%IayySsyJwj1=YL{ zXUwd1Va4GuS)a8EE`-+)tG!H>7i%qzZfr4AQ&sPre&_q#~5=xo5E0UYVex3^a*{7QQyXbCcVh9OO3O~k(JMcG#H3-=53s4fZXhZpOAs!+_a3D4aIIw~sRk(Abk3##ZZ z^$M<|-@|f39GjE0LyViCg$o_}z4Uv`+0wSP%kB4Gzgs_6wpG5R}=YdOf(7wKxyhKu7}e)JJ~n~hd^Sg^Za zbEh-$3BjYLRiC8`PC4p&`{8qR0{`d6j&FJ2u#Z-pU8U`7+k0fU=#Y|C;WfR1qbar0 zt@v3`*b)3QFJDua5Dt zVLvF3L@gi;gn8`vZYWmy#+H_*JVa!hIXGP)Qn{_eszj{;9j?Zr92|u zE+}amThHi>0Roj~CP!5eRE^GaWFf;U`e0C9pddg1j{aW-AyxcmK>$tbzazHce;0kr zXQ5HPM;rrM*JciJ1GU47_h&ksM2VqtR8NkoB`N&pmlD|P!PESNUm3!`e@fUtdy=Ur zdy@FITc%_=XZ*=S>>zA>eEb#xs$Hf*4r?O803thqCTa#X3xQd?a%+Lz=@@LCa4D>2 z`nIA7=&>Soi~yEoOe4g4P?5SDk+;i$OGwoGd&(-}jE!o_3eX1r)v<(%{&~BtN@x%U zJrP-9TH(Pk@yi?Fr9kPJ%lJi^XWeRue4`vE&1cT%=-??rn@E%;VOow*JM`2peCJ{5vQDpcrGl5$nq^qlv9r;D z`5sGI)<@Uk&5K`qOjl{x=yX5$PvjM*i7!Xd+k4B~(<2Kc3x`BiWIaOj_@Jz(6-zr2#aQqxpam3B3s8|VM7mrLm|}SPr8fsvc~OD#b8y&Sp0slT z)h+*u#WIDg0+1qh-$uXA;xwMxb_Jg5&`!u`q|U$_*TihoZ82Zt5nSil+GT&V^Xc7p z$m@{+b#lMDVoqP&pr67Gx#stcbZgSsTvSa&m%Qf;m*|yMMx^=|+egqQ@7%p2Tt`qp zXi#re#RSJh!ZSK@gVU}QR}?>DA{5lHAd!=VlS6iN9_VyPRZ>ZYC8*kWz?8+UyCczS zxtux$z}4cU5aGq8m`v5Eb4&M@GWXz*!WV0rjQH8P$$@kXKHC z^P_#H1hflmSS=Va_>8HOqD$P{y8Bq)MwvRFR=rpcj%o>ww3$zd&a6UqIte{rFj-H1 zar4PlDTZ~A%PvBhYP$68`wPp-6a-^;pJ;cOX{I@OG@o=zY$#uAmc1|A&0bhZNGG?S z?yR`)6JpNjA>ECPV99b7Q^tq$<$%fwI4V3MKqFx}h^I|LXb%K2z^nOO9Tgw_aZPLc zMc8I0sVzg*%2 z$MmX{$dKz^cCPwS`g% zAlJPCbVDLf)oyiufKR`arSy@oL*77~*nYjZo*UZ?#g z__Ya0FU*ZVBFUyDl&kTAf7mrE=U0-nA@)R7%7mMQ1dBGQKcT}e9Jr%FJC?H$2PFlh z^&xo`(~;5*^uR`Pm(=IbcgoKB7jSAT3g%cHS0=wZ7mMI%OKh49T>oT2&|F}u_Sk$( zU5a7tqAZ%<*U}6WMFhy`D2|Okr=Sg;=-~v2KvSgH(|{iC#|14e&KmOHtX^+V9ZzTa z9@S-LF}wJT6p5vQ%h(bAa{*HiV0WaLE~}W8Io@1~pT2OJ&yBLJ={Pc9`6W|Q?sYYa zWYd9p|5DxL5^CEbu5r6O9|vx9_#mDlp;gl=2zP-7bdZzm+2uo3K}t$r9#LI|+k1P#LX(+ry;lgSplr|2%%SdBzQsSyGB^oqE3S70aG(JwNJ}T-J`h%^Fi4eA0aG>4u2F z?aKWQ!HItX@+ZmB?FUi!CnkXvl^&^-S6$MxR`6$&ETARPD9$7xMRd2>HnIBDx?XMg z`V*$GFMH+SxTVP-o~6pM4+=J`V5b1V?JnFmoiR{*H~L~N$=^tPxsw+3s(XT;_KKJ? zUxJj%MXoea;6FSp+nx#feabu;RyhRtKW;t0aWAkeC_{hGJSgo@p!_oi!4pn`IT5X6 zgc0S}M(qakr5D2jaS;c+>rJ*_5?Sv4#Iq}{>D~Q1?`X?*S6B2i^`u#7JNr1X^I}dlVABP#MzQ; zwgnj!6#C$dAn@{jGY+bs1qIwbNp}9zPxRYB{R!0>d+mZD&c_Mn37MeRG=oG$5Fm;c z=Q@x^pw&r6jLBUU=N;!B=gOq~D*o}|qCq(k26r?W-sa=DN#3@xcJCjbjXt)z{cQA< zT;+>6YL#>(o9b);8V z^rn5IScM{$G&=K~iGGv}Fm96M5am*i4vdsteU+D`RxD>scYqVZ@}=gDw(IMe!aOA` zxqJ@zG1@!&QCfLlvycV6LV!ChzDm}rj1h)x?*V-ZrE6+)bS3c3*vvqJyvH3CQ56ma zOoxj7`KkS_|Fjo|HN}R{X6lQvkMWt9ctVYclv>NvT|j$fDXaggU-exw`stVu{Lni- z#FUiui0qyb5#*qa&_mKhvNR2ai>lR-^-wn_J4e;KqjXSio#&hnbh~>flq<5j_U_0f z@D`HgbU2bGPFN+7=3NZN0;RruHqdBYM(e*Y&ZM)`HjU+oH&s!_WI=OxiI9Ak4{5;g zwv!M9z9#Y|`$+yHc$>kz+^+{AG=we2?HcBSH?xaM6bjr#|8?>T0)w<`jdR=h0H+PKOf^Up~lzc)i5$PSgW4#sp z`$Yq5LbrP0TsQp=msaMflm}-$Zh>z*ALZMoIayr_D0z&eWrZvDS zxd`;EJA9LisXo=J;9yB)^A$dA*xdWD*p*bW6n;r#X+t90NqafwiM4+-54muT6vPn7 zyW{Bp|44hwuqwa3Yjn}w-HUGNP`W#%M7jk;y1TnYS~^8R=>|#Zl929}ZdhmO-@Tvr z-Fuz$$aOw>U3~JM_gwQHbNoiUW>6Tbkdo0}9P7P3gj-mBNHK9%nCrn6GHIY;5Y%7= zu-_s%VLabd35smcoZ&hW3lPG^=C-g~4zzh|oq9IL#0Q-fD4aw<4TEt%_LWkUNAwaW z66)$rsyqq^y_oyL>!a~{2ke*b=#wR~y;uwRk4A5NxSJE6*s4^}!Y{hz$49+3gbsO) z>0C^lXU?t9;2COUxTn#s8G&&HS7St;18F@Wz-SKMzaIijjR>H3vZDeAs)5vt@HEwrxd$=Sg zky>MiX3B4fmZ3NdN)fC-V%YEZOrh;tv}HuLwf^olB7 zQ(qu3=6Q@C)@{WtXuR9AdD5^M6}iX5ht{TfCU-8+reODRbNxJsmkduu?^8+rv<*`u z!o$OjN3qGN`v4x^OW%+6-nn)II^XQ!`O}7>ux9r{WF_&(q}QoW5D6+L*Zf1~V6c4g z+aF3w`1~&D(fie4`jV>w1_Fu-y3E`>4%VVi@XdCe=X+g~t|<%Zd#PR_fWu4%&&;i` z(Z463by)wv(GLfanQ3j+d}$ea?vfq04XnC97qKeMz?|4cu-q`UP=Is4$8X%Tl4AsH`hDL36yYwN1i|;e zr|pEyHPxe5%y((t$nX6Z6lnA;Eyi>h`!_3Lye_kE)^p~rIw`)D#odqfEWNwya-qEy zue(_}OsHcGvoX{r9X9`#+j7J<@(F{q_FZx7dgUo!A)8&pf(PI^^dKmqF{JMxf*5ln zzd4_t@58=%XaF(QH}>%i_HIeXVC?;*r<`xsBvU8kW?5%TY~wK!hPRIvnVm!_0|vg$ zrgoZekIL@N6F*o4y}59RrF;NMG>KdXpUa7u81Z(udq+D9ul#{3kgYcJ>tRyPT1o6MgDRF zu!}a4H}R1fL-j)R=q!+dSU>`nq|AYh_5MPNk47dvg+HNiH^(o}G#MC~ls3lQknOeD z*T>z|!oivB;TtE;YT%yWcvAqB0Q)tDBzusYFZ&A&s#y?>+$IQkB0_f!Q?Q94xxpYu z@R^+O3iPKKhEtNTS{I@-TY zmn?|Zj3o>@i2eCP`RiD}RLou?M1P0!x5AB8v4c3l^-4S-Hw!N~-FB_6orZx4kAsxjK zKJ1TcK$-r1iv}1=D8Na;{Bwy0q6LOxM*PcJ27C|h7f|&4f6pfEBKx;_sl{UJ#`brL5Pvs;zf)YRg&bRRXYvaqNS8><$}GFNL3v7&TNPD zt{{BoIiLRhvcgB5KowX<1IGluM3$Fqw-B{kj*O^&paWH2e`4vB{aw;)ZIhJwHpX9p?f2V_s?W1RBHppdA(Z+i$INe17S zl(Dz1v2P9u`S{&8o3{Ga=VG6t3BA*3Hu^#d7{zH%v8=2O%HA5B6BCWI)>@ro{L0Wi7pyDxR zN^nOO$FH6saF(JI9M_*>OfJkNKo=axzr#cZqaj5J{oi3C7od)11o-;^u?GaqS-xN8 zm_`rAy?{I--$~K!bY#TWF!?CJYSd?0fLss6F$5qt31vEzI9K#I?nL_)T+j_TkQfX1 z0F99Q5C4V19OwY)fgvG>N2tDk>6gK2f$+<}Jmttg(S8*Hkj`2)h7fiz!&az=W2%BF zS^*A})*0v4o|b^Brd9i_7M!S@=ic2S0wN#YQ;?6icV=T)UpQTGwN~r|+-XR}#Ptjf z39%A8GG9D*v?NZl8NS{*zK)$=T@AKzRA?>pa8w#fH1^sK#+~|T8z3IZYGnM(2xHWR z(H*V~pTs2!)2(7%rbRm{b?Um8vy{$!;8P}Sf6+?q$ef)ONk-T(aCXS*&L!(8%(%BC z%*F?li@f*}$z-yu=FNMPrh6)>B+sN!l~#XclE#8J{n56@kX8)>Ab5=L8vNM=)B51g z<_>1P!czMp!Dw}XE7}!|E2gs}rkJV>IDb-%Juc-JvHuM5yoX|*>_kktuVIN*v6pao z#$I5HYAtVIFZ04o9%)0j)llo@u4aLyt^7E3gq*f1IE{;ByhZN4(>P4_Rwio+F}uBs z=={8Ymmweu)*a|NMwSrwGqH?hTz9I{1v~zR?SmKf`FO5@6h)udDTRTbpXNo>pl85f zw=#DnYKat@80SeIi2#iPyw^GCYj2gU-aX6Jw^|TyJJ`xn`(CP;!FWDW z3rZEqz!{>kdytzkD_U=!e5r%?I(bYw_S>u8Y|rtj$aNPnUM{1QPGp1HG3zEsiv)qD zdyHhwWrPEKz!SnPTM8mRbn}ISP`E!QtZ~58hj=m+JP*S}q#;64lAYF(nNaf%jwX^{ z(AL9Y&38soeTAarat3E1Xz;%Vx%}O zXvVWy1|0vRZ8SGivJEwe2?~Wpo+aA=7MT~9NYxuITDhbDE2r7Q(OVHMGoyW zKJ`6Cz3&Rkoq|_yoCY<~7JBm+_*$0W;YtUieuhfB{TK59C&eowKbX~4lEsu>X@hl= zpgJv1NJ|8Xz(}pXy1Ya^lPWzI@45I6>D+ z&&&gP)Nr`oo9;%DB_B)6VgelN?M&ri-OpT~aXhWh%WJjr(3FaMC)c73TpJCNY8qQp z>OVG-c>3MCe?LFDNYvH;wB1^`Ddxr;NV=8-eS;P1wrHy6dmtFN+F34y{*8eAB~J>u zkZP=sY}jZAY6)rCiU{AOMHV={Y>h>96W%ypBvPe6pMAeT+8a54hkEEuV=@_bujFRQ z*TFPu++x)c((zl&J+xwjSc|UjdO8hC8l;?;a+hqO@8#>1TI9rpjk1&Z#^OHE@DcB= z9hR8Ye_$%g`Si@ExDAR1)ek}jJ=g#5$|!Jh-tS2eya_e9a>D5!5KH}^>LWs;|4n@q z4Q_z;^Tz~Hzy^i`3d3Q+Ffj0H${M0&w!hLs9++&ANZ%GtO-vQ3DS;%fXE+n zDsPMmm4TBr5sv(R`6Tp2`!d^=?tsYR?HK=xkjcrb=pVaa@PZw{Enhoirf9`!HVIw2 zD<(`e{=S3GzmZ+;-E}Wa!P%&K_+>KAw@PHJfTm`}Thw|*U40|*&Gc=;q#4gf^kj4$ zQ8Cz4OR9qyPbg|j)8q1q-xm70M+^+flvGS#_OTu17-B_7evA&a`zsBJuAWlqw-2(` zxGIt=^f~NpXRhOZ-xe;4AHIlR#>i9K0mo^ma>K9b(%)4VVJyTIWI$LONM%x-k4VSL zivOLl86xwmOX`=QR>}Fk6xZY*yXEg;enkJ6BW_$gr zpOUKlnSY3dZYuxy`1q^%ZGUIJ1^Y%M!URAEvJW?TVcckygsi*3b1I=ic9~Bmb^0HOf3M$JJ}v4d9hj&W3(Y3hdG(=MKyZS z7+tF5LDTlb?$5O2-tUb=YX-CP%oS$Y(gT&Uu0m>z$QKlZ0!2M_%Z(L#-4>0wDM}fbFhXH4i z!ht*L$l2K+MA`w#|B^ReqszaB^uQ1REeDuk{oBnyH1L~D4OyuJ%lmQ(DpSF1s)NKg z(dcFTKrMU|Ja9Na95cPlK!TuXUn8Z?Hj-`Y>OEI!R$4Sp_UWX(^^C4Cabx^JZ}979 z$-9an)GekN2?pS<`xUuj_78dVC?@nI~jNE1l;G&85e%d&F7`p#u zQ!C7+Pp#{RKYD@BN9J9gq@nCkj#65i_mdiP1*^Z4m`hi@yP!%rK0#khLBLT<7^$#{M{m;eO zH>Vg9_h5uzocgCyanRX76w)(6!jz91Np;AFh~oAft5{HyQq?`7+Cn1Um>ZH}w{H@A z5~y1f4lHqn!>>U(8}r7c=qQXD$Qrhkjb|50Jr=RA{-8Xp{MxSJ+xW-ni-vf&7n+SD z4I5F#e6y3Qhx=vNZiU6GyEeCAHx8AZlan!u!%Hv2nLDxFijY~DK5>j{V@YmWfmGo+ z>O)NXlHvudWiMJ1CiB4nGuz}HtngxO>}36ISy0rq%0OK<8GccSnZ-Jg>ucb2l{0jn z0>XIMsdV$3&D&kAyLSW(1E{>?~v~Tb5-d(x<;Ff4RehO`cr3EDpb-6(ts z5Tz^Xk-FL0X~ZMCqa4e=$S=Lq5sXUq4R}N}j_v*(HsRb)wK2K_*`lY50KYYIC|CBi z7QXz;Yd!w6LL|l@hZh=A3CdrQ6hh_0+xYPmxv1wrRb6S8IIWUDHIr?Qw`W;Dba58u zT0V%c@YB%-bl`sFkUZ|(!*aWV5&q%|iId@ngkvAEqAsJq%NgO1-hic-As$d*?Pa>8 zBgY?4IU{(Jf<5IG|5P)+EYjf|-c)YJ{e1K?_5N}Qf9iNAlIzLUc5oElJ6e&gGi9kB zVDg~Q z<>HWe?8Dv=#>u@~cBv!6+w&c3ag9bGECy!I6(8bP`vsTstd2@&g^@0!I))b{Av>_W zNf#rB@oYh9knSFI->Eg4GaYU#xF-;zJP%}?H7=rQ#`;;gHlKstF#0p+z-HD){r=sv zGajg_X#clIQ0bvhh#PY$z7K}eLfE5_+Gn^P@p&su`kkN~$_J}AGaxL!3CE2z6PgWO z6ZjO-^8_eVDuWTZ*mVHz+46v)=nxcdS3sxS8$4805NmOUNn%^r7Xb|xXu3Ee!woLi z2V0{@5zW8b?AL%Btx4_8YLfY4tLO`(X?%imH@iMW+bq~7oa*i20$HMa6S2c8zAY`}h@&?UD|k?=ArbXa;Mt@UEiw|>1e7$i_gqKUa_zET5KznX zGb>GUn5fz&pvFWsEGR0cYFjB&Iam>}g>O)Fj8M7FGS`k7qh#WOdny6Ts;N^-mBe&G z%bo$MrSD4#`|f=!SzqeCD6l;3Vo3;XgN$Utbf-Ucd@Dd` z=h!(8KiO5Jti?_AN-S4gxaad_)q^!sKr%9Ns7cHT2~j;y8{Z zel=|xsvPpUs#P(1;qxCH65;~%aho#z)b3}PdAqpfXq`;ann~h7);|=Try$r3eCwWgf|fKYpsHM->-N7HFMJNqgp7 z&<@$}b9uRwnx^tf6RdTeI-2flW=dolTarQtd%Y4}3B>5r4~9x>@|YwYmN?>bPbU45 zzdS>ZGl8()952&@qTe$NxPaoxL&FT05RKTzX287XCxxLib!cQ76#41`Qnn^Q?&@1O z?4iM4&k(JS*bixbNP3813NQ)egc0Qt&-(5F_cL!U6dy1oX1}h0R_I&-pFYZVqp=p4 zvYAe{z;~u7a+^E?NgxWTVu$My(TQ&-!Cnt`!uDfwGUOLGi2XP-(j#kny8J4?a%sP= zfD23`?LzRqtL$2(7uzF)h`LfgEomdXHo;*~@(WRY;7%BrTGU-%9W`)lV2k~}D*f4u z4ns@J(LGdq+RgTP)xNrpbcb}V&Wn0+$1JU8vMp$A=dPg8nOrgIubhccJV4l7<~CgK)cziJ$RNbYCfafP8gjM zbSRbrA3(^_AvA;8Z7=}$vyUJk#Fhd>l=25XEbzq&9D{}z6!I$(?ohkaT<(!?81v1} zzOq9$B#21apUJ}=Fg*NuEf6K^fB1}^iD2#-wuil8nL@O$We#=}yrK_q13}#xBkmWN z5bTqX705vv|AQw(|24(sV*mTAYhfbCuknAVrGywKnvBtt9ML>mxf5?X^;9c!;}6~` z_{0a%?l7Oa&;$d?1G+*3*@p)|k2FiZ4mP_ovb22gL-=`#QBoi=SKc?RFzwAo3ft?KEus5x~`D@Io>5T7nXX z5HB6cy*8QL(HF}|{{Sj8SmO&0l9pW1#OuYT3+DtGf+kw-5)hgDT;R|O z#6fBXlo+c;8 zM2zjk`S-GBuMs@BAgVw*s32iWzP}%(w_>SscqA!BGan0u@J=~GAw<(9%fE|4DEz6+g%lG)~?iU^rjn>%tq=s zc%>+lXTO?O^B5RP`KFLiy8rR&;QT(~+rs(NX^q3{kDI&MjY2RC(9Y(Rit;4lxSlIH zC&BgrMM7hGp$m4Wvd<{XDb+uvoWyw?IxKZ35Z-9TCR`_IwX{{L%KK1W$QQGuND9!W z2N_6tl0BGRSw47&fut`{*4nhw$37-MrKC9RqMUx(iB30W$?>6+dT^I6h6cgA02Pz# zxX)t9#y_FS+DK-|Nlb+FR4FSz1eWw=cPWhX*ch4*v?W=+C!{5Y1T`N)3CAS1S%Z@c zddxWqtJkqs39N7=_e$#iKu03h-ylemdWv0G%fS&DVJyE5vb4Bk>ius2yfx6rIHsh9tHrEe!3piVX zYn3j5Q3_ElG29TmF)CEaF7{;kbO4J|2y8OT_@Hqn9=0W$$3UBvV-Lrs>`)c=9F7xf z#fwZrX5zM23>Rsq>6Dkw$~o0^_pd)))f#0y-g3VJ5s z;yb8UjNL!N6Vq5k{th7!W(M&OPdvfZ68qne$PKY?=n-c4gNZ-*I)NEn7K+yF1MNh@ ze=f?;ukt@Uv61=3*lGqW3yV^NRNs}495Kp@=>A8YnWgk3%l60QkrgsV(vZqM_mpFMYgpeX3p?*T_nX?ldo7&xQ$G7vFtM{U+u~J)0`m#PmMSNZG)s z@U;He7owx-W2G;Kj08Nb@y$DbEUSM=s?OHs;g^q~NuKiQED&S!_zGyOE)WlEM<=bU zrfJuN>0K<%Im^O9_&H92H-90VC-U`^?}lM3zvmIm!dO=H(#=Y`9iN+2?-1Fx#a;!d zV}|eRrt#B;c>D)zA;vTDHmGW?W(e8s+>rW-9wR&782jUM!VT+W^?+%hXRqKb3?eK+ zw)iy>rFX&Az@1N*IaNCWC)p!z6=vymEd;Ht`F>tMSphP$cVHDiVV`!FU4eeK_6*6K za9>4LSCwRvs07YUY?gNM<0W;8BTqN(Bx)Taoj@fQZldHoA{BP1E|a68yDq$nnUi!-cio1q@md&YY*tc0ML@Qk)1Kxo3wyt z2t`fY;J~W?`V>D#xuGBb=PQs*m6)LiV040#Rqx`KO-PZVg2UFp4Y$rM0EmSpld{V6 zW9c=r6ZNcFbtmGgTntixL~2{CSa>GKJQT8MZFUNIeiqpBZbz^D*M zP0;D^B~&y2Cpg<_n)UH*Wbwior8&YWE5u5$4r_1m!ky=3kf^?< zbs3>EN%UMrRK4+}I5*s%8nm&_e?C#;SZ;Y<(J(e9tumo;69eX{$3SUxBTrrkZmb8e z$i4f(uo`K0v!6`oY@lirHyKxy9mV?D1bo;AFy~aR1!jvbs~r|Cowj zn}@G=zY)CyLlW#VDoU2ORR80Mjh`9k`x*y!%ckajbFdVM$f(_Swr}Hqcl&d{i8<=@ zi+Le(jYctwre+xn^0|7Xo7&s@m&>P}ZC<`O<+|$_WlU1O61P;J-b{h*#pQk4ZraFo z)4N!0p4jKQ95-T7Q4S1HglpL(01|#E|5)0djF|$A4|P^O>b+Kj1rC|*@C3{e6XXPo z7F~`Cp-Ztm5uZ_%=5Rv(?qDA=HwL4xM6BbAL=*kw>41Z z+(B;I(yOt2;J!&3LKl08nCF#Q72WWjU#QcRb;$ig3sGFnv#k~Nwe~{Pfraiq%zwvKz=%vhoK8qYYmd649amyqg~_VR>yG3a)(R9L^L@ zm(u6XAJjk;rf|@Y@;XL|&839^Ik~|Q|Gy3!4saFr-@e~3+|yjVzjUc^CJNMW3V+l} zDF12X(@Fi`DcXI|*LDP|RB(~7(Ot&_1`N!pA3Quf@DwVU5!`zKNbU#awnBX~1F4Mw z%sD|NK^#PWlkKUf{Hb{M7I0z~P?@j9=uTlWU!4MmlXEls0hXN6oHA)J1F+@>ibeMz z4EDD`QPiYA>@IxM$OWYB4gtDwKEl`dcI>zR8?YQDsMFYu(H`#wB}>KgiWXj>P}WQ| zFe29kS{nYLR{l6YgpcD*Jck6X)5DG^3QWoemBue4mQ63RSxX9Nv$Q6;Ct0?uIte~# zld_bSnr?!VtyuBhG(J_vxcsMKaOd zLx^@gn3j{ddgC4L>XU3pnJLoi>9{m4=GV+xa-hfb58+#W##&Hi@KcFW5^`)ng*F=mtoaHaF1YQ1>;mZhtl!;iGiF zvO*X{KZbp&NccynTfC0h2W~KK_OFeqi7M`F3>5lBRtDyf3thP+z3w2`18cG!_bIuD z71dn`Br$4(Dbo4}?<|W94z-K8-_8m!DEV0Jew$~V%r8@r0I9vztHZFKDq9_&EM!t1 z`xtpK*euwxSZ?CtYl~l|lTjYR_(`*gx7{#I1`NajR^smwP%s0hexe7zTgz|;>Ti;9 zQsj`tH-;6-@JbpphV)pa0vvC<2Td(5rNl_vII>uOh}aJ|?fsbgQhxab;}Av8XFNO| zinpsUU)A4IWd~pfjfT>`I-i=jFpEil%Y1<09ATOl7tGED%j-gkyq%aUHcq0{MfG%y z_O{Ol*<1Dtlu$r{&eJj7D%l*@2EXm(0d9r4Q~qQN%XE(%IT*!`5{O+OnX(Ptm~31448AB#E100AV5BjM}%2( z@lOAv8HF=3m4H)t{zpXfADYo<#s6J1ii(Gd8Vw=@H_&l`4bgAfBgGtnJirpeWAdN0z|Hx5aHa+#5tqhO+i5K1-M$66rT*5tD!;HFdpvJ7 zCN!m1LOat9nD5%3*;f{*zUKm8x_3r@mZERhkxDNefPk-q z#W^CMMe#;XV7Hj;7Cv($(rr)xfd?I*sql5azY-cG%i?e=Z^5t#xHhrheUVAVEi$Bk znr^=SG9zfMv}=iIw#(VqeQAaI0Z>_;d<1DFAyC;IkI0%{7!mn3afUzogv(-9SspZ+ z**-m|<;--2un*i`2mi8T10#n&$?U0l!uBfnTs{jAatDOn^}Q1XzG{0XN$P0LM058ot{8i2?)UDS0U%$0vDfgA%(A^V1jw8er1^`oeenT1D#Y>$VXIyHwc{R z7t8$JSE6t;1bt66+h{R}>A0xyk*9$dA;8c;_C$r8L!@n$qfH~De%WN$(DEt*CHKO# zrCg=Cd5yDsJAn;W+HIFXdPfKZb_ag7y0-snNmy|;5#2kI`jNk++j09l2V8e*=eV|d z3}bmO4M}kp+h?1s+SYBYXRp1hV)hdWuhRWlGC5T&o}DDL(JvjvW1m!rG z_+Z`Je}6XCTH@<~V=H-M;%auXmOeAa^k8GH`E19}y+wOdy5=_g1>E2|4o}K>bWz!x zo{&1mkH;8yG1Uf;UH~Mh^eBJ5P$alG3b2gCNUpdB7d!}eMk~gLWd`Thj{8gSQKS20 z{|PcaO8=N(q>St<%HiP*nuS%Uu2qhu!S)PBx&t>a+;I{Y6M6XLp6aM0k|do-%EFei z)8mLW)PwXy!UMf;R$t)Ad}F<;*EWKws-MqE;@WX!U~?HlIc_2V2s*Y<)(Zjk{$t&g zVZ=Yt=GX+uLID9(c*&qO*im(Fq>nt&dA2~mE4~N=7!XT;3w)*E^GT~64>^4P=wVNj zDe^XS&aV?HLuk?H7xg9IT?k$>K)2e!<|BL%;zP0|`gnvFvShAA?6VoLq4Ow zr`_<&NKbJ$jSNJ$oBfN-hw=zeevP}g`-9xopc7$&mhz72 z{dK4(H_7vGPw}YuK-wZ4Xy4{>Zz&%#RkR^_Ot%0gmKU!vL*}_o05UyGouP7o&_M!% z)bSqfD03tO@X$&qzRB`uzrKQ^UH!^sU7V%k-VX)4{@3n5 z98X2RhC;mrT9Ss8&A?9fn?;z`AVA|Aw$};YVA~_c%*Z^S)U7W4o@h4pLCN;8X39); zz$}w2ZtB$XE^B8g)O5mDG6QsH!~&x;aGmL=c75MWzu zk9g&y1uYU=`oggt?4Xtnzovj$6Nz8;2X2CXiJ=3i|B&3gNP1+D9tjfI zctl>`!mnbB--WVd&~;bv7vMtK8pdZxHGxF1S)^TZWN>&3KGoneDmP!EA$6PP3@P~b z`mpWb+c5*1+;c3GA~VNl7Vc6wO|d*r!nm~Xr&1IHtcgCB>_;Bf^&)B3WP?*U6nAj) zuZ+DJaG9){jxPFQ>C-hhvD(L4Sig(VBsvLk3RN?D3(+n|d|ghS;;BC66!5Y{Jl-Zz zY!^-Va0I2#xv2}$EHn)9EA=*N$Pq~g^-ttyS##xx1{;&XIhbtX<7};oK!yc2xL(F7 zACyJ%e2V}W;rtbrVRXU@sm^T{#|JJp>9Oggcc6|d86T|fH*&Rlhq?E)obA=G(s}U- zB|ZrCu$X3Xj8|Nj@_1B|Y7x60K}~%2x`(t{5QfJbynpWt<>DCQ;`~J-K^aTHJ*WO7 z^ZQQ@i7?|Y_CAPxlH(5a^{QJ^g7TY-U*!MnrH?4$N5%OXBrIYxgn6FkLe)N z1b4mtZtnP1H#^H`zXcWr%?edFC;^QHY zhfmV@v81`fRbrXGceJ0RiNkA4FrX4)`wEb=g5%%L3>Xnu!vk&|v&{}xZ%tt4n~u79 z7N((&nPMJzCBQcH0hA@zvhaeeWPjS;7o09}w}ha+S^s(@QQM2Q=2v9s`NO;iU*1Gu z4`hMrWfIwCXAA5m6-q3pV+&K)9mfTAL7fMqk-CwxVFyIHq$M=%VxQ4 zxj%8YBywPXx3#z(Itke%D@EW9os8)!Xng4lcIVLXv^AN4Me}iv+Yya$VMkF+`{?TM zD6odG0Fo$K<|O-uEvk(KEi3pUbe%Z&90a;RiV{y;yLE&@Rb*F5dBhNZsD1lnEPL$P zW&ZpcrP$kO#f4|RmkAM<5yEOdO_{Ir=I5f%qCm1~nV%%On4H0*gnOugcGGbPyAD#x z1otB-`JuOMc0a&p(`zgCcBwegR#7S>BHMgX!~#ZD47hYgi3G;})Lb!6^LTP49~>wj zC@6hy#Kt3c-0KF{gggmVbUNQ;7r$14>@r6u-3p~w-!}_5H5+)RX6NQLcbn$y794im zsWIMAOm-{dOilHhBx}P1*hXr{ z7FAM$hStHRbt3AFEQyK-VQ~jam0%&ZgB4Spuv=W+oAa2BX_)Y5vw13mPF;cmgI@v! z#cD`V1^8Hn#inF}(Sa~opswqQurU8v84Wz#d1#V=Cs2A0y@UjN&k4h)&fTtU7aC2QCUz<;F;s{IoI(a3@RYC7 z#x=&2Z2NZ>C$dx_8~Y;#_uz%2ql;SmqSE+F=(u1HWr*I6f}73|DiJ9#4MulRLQk37 zQ-OMM@0APYp^CHajjU=)=rLh!GAq+N7|R-tUsErIIkm>R)YDS)!SpY?w7kA2b!dw@ zcpAo0tugQevnO`Rb0?oeIoMk`NQDRk|NK?)$4O?Z1>k2$dk6wr;dw-6UCZ0H*h%mn zns&tMkD=)B1+(0+1IQ6MYwSm{>bEitJL;`C^XDjtJK?`#T`D9@gWE4WRb@?}Wu1)-clD^`8i{4t=UQ=y#O>elxls(M(5*{3>9eg@~{{)WFG%*Hh!)ICMz`!_}u|vTiIKlYS z(E!rpVXef;L~+L1;pn~w7v*HcpX%cTYHCqJMU{wi4m;Sqjo^rkk9APO>O{~FwwKoq zwy$Clm!n3B;NDJQNy1N5eFsf6qB!t9A!}A6Ed^PZn!!prW8J{^@Ot&_1Ry}OYD$gj ziWep42HuIqtm<3cDt$Sf(P1j7*ez}_Rq9*afMro#r&7dP738hh4^<2s^E%v{vfCIs z>Vd5_#vwdnRz}JzS8O>dQ0d#W_KbB3?1h*8qGV}ep72xmUI;9H3z?%p7wAe~M*kQM znEESK(L7o>)CYWfope-<3e-u1?kqEpb5?s9A->kPl1EIkMm<|Sv?b7%qC9P|$?Z>_ zQOr-Z{h#ZMwBI2pl4d*9ujRQ3W*HKR2Q>@%N+&tPdcVGgSuyGp3bdUejp0EYQwxd_ zS!uwG@r(U2wxN$*Nd(x#sjMq@j_tZ7RZ&Yqr%>vRRhE+8HF( zGFR@l%hz*5Xa#AjK|qn*k5FIMB)8bjv!nK!TVdvOd%*0#5x>XL^W-CveGcTql`TRQ zE21$CsI>|}hgz@r{6lRd0ZNrjm!@-~i0;u!=iZ3qM%w|QX^aAmX`S7Ub zqveCY`irC-B$FiVYrTD*_&VPpaYH3J%N^@mtZn4y7H6hqe`;f0tyr3<9*b{cIju(T z*JIsI{1^B-@mxt)Va`7)jU1x^Ik@6Y7bIaLL<;bTbI?fTaR^eH3E5OnySeLQ4@xiy z0|Pg$T}VOOQgv#>^XDXxwkbwBd%wAvnSH1dYdXQwxHRLXiYSv*2ULq8DCM?x{ov;^LlPNg(lD4JxpYD1jc{X!jK=IJIjnI znL3tQYu6g?=$2Xw9ZViD8}697aklbk-ljqL+M#DXTX)}F_3i?T|8{^H(%yjp!?_<( zknpeRGYNS5OdE&U2B3j|Tboq)tDmr=%RkjW0SeaX#L6RC5L{2F7Jb0)=7;rG6crKU z;GL8A)~%CUnGQwyTbA`SL3MRJdiAW2>-pGhCSR&IJB2?L4~1D)u}b+e^C=`4K5Ob5 zV7>;|0MVQroHuAtE%gh~MtP|nuAAr{1ZoMg7l%IO;;G_AbAYo&eH!U+YTB5V1d|DE z*-l&!&ATrGU7Nct{9R~awvi9h+FzA5xa{d9;tQ8}O_&#~{7F!fHXXxx-PGap95Nr4 zD4z69?~Vpl!_#CwpNREJq(NfqRt^QXth$t$Pe2*6^*iTqK8&`D-M^{4T5$J#E+ErS zm;+W4HLZWjx(|nnt+Cnl_3;siDpX%q#s1{v3hyI=oFR7;TERDb?KS% zl43K`4iBrkrZ}v5NTmIoWq^jc^&_PpyZQ!{>US zmc5WsYJIElQS$zI86~U0QEats0g05#D4)pty)Q`l7`F>bX2eDO6!U~dV+g0go6+?Q z-7!}H+ID0ONG~74t%Bzfv3Cb49d`3T%+THws0freBLm=qXH!2Oqf+5vuDaK5?r!N2 zN0`P?%|*tU<{g7zV4Sc{5j(0)Pi=a^tZ9NP+LHS+!dKMujj8hcLf?wLme!fQ8~gU9 zOWnnR8>IuZMdx~|(>ehUpX8>Ixs3HgpUS?4Gds z#S%ey+>M^s3~z|INd>KrG^I+#Pz4&DX23+0!2uV4F-?ZIA_wF?@&43?#m&#aSX<(h zs@=T`6bhJW0lrZ4?{1g?cKpbrW;g1rE(NB_pt+E21FokT9aW`9xm1f9dN%4BJ_5(# z^_fSrMRhtAx8V`XvzcW^*8!N(r2O#dJVs7G06i(!W_+SG@KlDeN;&+h89Amoo=-4s zj83HdklVBR#GJ?hBd~`e`~p@FNX=J!8C?F|-wmLSgC}x${qF@Z;{Y|N@MT`4EaJn+ z8Vgjmng_&3qn2}0_S}L;)J9PF>4Fj=Cn)amp-Aq8VOZ`tY|_i6Ii&vdDA1?-k{E(3 zCFJh%>KvNN*N*lFMQ~4QUIj2aB?FV8x09ub*0^j*jUqBSwe-7(Ee25Yg%U|-737x9-5)iZjpoe~pRL8D5_R=!H; zxPC_I1eu==3ERAVdYiC|RY;LD7h_^4PO`nhMU5-Ym-Z42%9rbDiTiNxyf_DCVur)S zTa>rAt>Rt-fQx-s7}`hsz|+>KV`ty6W!-a=$jBqnm!un9@C5@R5ljzAh7~ z|0R<~1S?~gBpz~i9&!kkT8MItSguk4zb0aYu4dVA&9m^Vf$35{#wxk}KBXElEZG<_ zN?94ch~CYjB(c7C&oIh>yKJ&Sa{He(J_V%v6|av(R0L}sL$i4KFsta^ZSAG-z6{i%<8Qs23jwiVx{JRvuHw{O>o#3n3?ebE0opL(kwx- z_}bQ%B}m1jJZdIzG(c$%qKRtR?_O|qJ$Z}h0Tn7a$yGQ@DOXq^K)rejBoZEsb^lBE z!ug0iwu7lZYQrSdfR`tTi#RhqAXZi88L`n{qoXmgv8mRwxaDot4;3ZuSkUUs=mxUO z3eXKS!Q0a1-(Sb89DLaI40C=yA-+cJvQXT-PIkTQ9U>OINRzRV&)0W578P2(u%EIG zmrrhv{;I71y)mx(x7DMkw3nRpHH{nCQ!uiHB3U%yBa#Pj`F-vrTuZzxxb*`!+k5&|-Kx zJk}7`(ial>eqHF{?)0Hyfr>F>CeA*ZAabV_LU;`~#Ja3U6m1?%fxW)qG2}9Sn0N~L z$_8v}5$;&2D)SZmzl^V2p4@Tk+rXaM@N{&H0$0o%iO`=T$&9$@jrW)^`x_FJlv0!* zkz7S_H#Al8yB%vny8N?ETLD5(JVz}8!|okmo~5BDh!)oaQB#c6*DdXo(>AyH$xpjI zip>X7SV8d**OnT1+36;FVJCMV;IB~{wOpB+Q9QM762E=Z;Y>0U)Ba4o^LFG&%1~X- zBJc@{XQF%}oTl7Ebk?+Pa6$l)ARyk`+6=;30jVa78(jVJ*UaJcZ=aa|N-!z3S3mW> zaDZHyNlSq$b81iy*vcp;yYK? zyuzhs-sb&Va*EP3qoPCgV}|jks(DbZbr>dTQCITkZ^Exo^}4Pbevv~2$0w_jg;WNm zdm6NSREDMKT6<3w6!H!E&~Ib?o|3aSI|<$`4HZ?Bw>)_7n}N0)!4<60*Iv_8-@mB& zO&AhrSJm*fbylynx&~ek)w5-?i?y^U(Cg^Lc&!IVd^-?w4wQQ{4@0jbZNG%{oPFLY zum-oT<1TcKS4Z{vJUj|>2#dGY>V2Ie^x!vwOTwlSqGji13zG=!sfI6ujgNVP>k?}$V~@0ioSYP_{Ax`MWZ8KWJh zDZ=;?zfC!8l!w5-mUg)2hmz;TkKC(g_i$#c^@(J9s3Av^uQ+g}ImfSU_tlf~g?isz zc!J`FdfcTAvpWVzy8+U4>gnH4sSm!l{7PX17=@q)f{&R7`jR}Fu36;k08fVM=V7Cz z2Q#^}S$i_4U>%O2HKLYz_t;27SFq@-cIY4xqC>NtVIAe949QhQ9H;(%)D7q8PuRku zv0E0_X7puYY(Fby#RPLb0IMI<5fT>HE>8E*x>k)Nu)C1?=w`SIm?!O$KM*hKV(mri zV7=>lM*pNNTyIaG>_y1tId-gti}Y45+P3}@|0M=e<}78vW!<7oYYkG167(+1S^Jar z489hWg*S~rtz55z#rLKbZf8_`%$HI>{SJNWvX^=yxwoK?qA>eJr(9!=}vm4Q9h|DAHTQS)iz|ei3c#AD+7hQ#9E= zK%&UN(wYA{-FY4%D~oyC_VF#aGvb|UyzN)&O12zQdsDAukUA|t%y_e7M>B(F0JBB&LZCoz{%-rBa#A4U)|aQvfhdBV9kej-_DQBm z^(vsZ1)8W*3bqmcAIjb_ys~#)_l#{-Y}>X~u`6~`v2EM7Z9A#hwv&p@ihKUg-uv|F zUUhY^H9yQbl6=TD$2(p;xbI(EV@zkRK0>YbApgBKcMh(IYA#8ILrfV%mS?FpX2a`z zuwf}Q3Gh;gy0Ojx=VnQl8-2?r_%tFXkN#ok=a`QCgTO^ExbxbbUEcwM`YzR;W*bRn zUDyGFBp29`I5uhyN=hnCL_}J35jQsOM%cXA#yAs^FOvO>jV!zwpNc>HFHFXY2iS|J zvop4@&7bh`Fqv+DoB4mqu(2}z`#n$H|J^wK!=wxly6OW$*LXoP;Q=M!a5zbTRDxXJ z7^r`d$i3-?JlV}(k`}89mw$)L#heTY6yMUf#?kfj+Dpu*Nsm^wCdIN=L99pRH(<>e zY^0Rw%&feN`|R*VsgyS6sGt>dF=!Q2)2UcVZIy_xu8~tEYG85xQT8sUVrFS70Y5bv zi`EwfG3I;i@*O z&8Hw~4TYtT`efd3PbFyA0c-hfgMRjkAMTV9HtqpA>gCRVAcMhdd0Byq67{Br4a-+SL+be_eNjcAcV+N43!_Z9F)YI zjYi=SJ$h~idl?}gC%0kfAzsY>MO?-T@UQuoWryWIP~9&j_WnaG9wtJ|1Q3e>%TC|W zLgD%$FDjL6Q$w3Zd2z7#kG;7kMK>^M7>9%D$t(X`+lwL%A6lNB>49g}k(UVlxGu!4e0zO4{f&S3_`95*Xy?SbJQAmj zgWEwp%IJ_Ga21*?tPOP%*KlGL$weuMz29F!v3qZb>PdxKX*rsgRoj}o#!yUm2)*JN z#HL>mgjNa_%c9+cbh@l;;N~d`KC(3E1R46rX*xS>+8^(o!i)oY{a4`Alqq|-k(_+w zBHMi?hiVAcOZ=C>NxMI=`vSl8vaH|nr{vSXdwqgWapwY6bM=p^F7a}kS)zu_9(X8< z9Hq^%Ej4bE>&%Q7?zoIxnpcCmdnDL```=iSn>4P-VLVxJN!9L`ol(M{^M116d9jC5 zK8S`lE60>N0gU{sM>NRyszPYoK*>2J#s4-_|B_^4VgL7Qy_d-V=W9l^5J0WB;|A&h z9IZn1U=grY7&Fd|^>daN28x^guUfCZF(Iy}+>bnHqCss6hKbV^_T%@Y`)}?k+2b_v z;WGBb!Ab3LFYRv0?|~B+!ZT(b#2l3j*Iw#34~i$~Iotan@{v5Zk1rp?3tJz}alBiR z6jTjnx)P|h_fIKxm_~s_*+D2cFig-_6cJ9p$5fe01_hJaD$vS-q->>3 zSnfrjAEWx>>?QPzXqC)^=#-3&>6N;K!`<`Yi`bPdVt(g=eMKNRnx3WZ*m}xWIWKET z)HvTYfO^#i<-~f8yc~KiJXc?zqL}(1Lc9q{YOVTjC?8y-N9j}NV|V%4VYdpJNYPXo z>ZedXkx+Ha;0~eTo%Z*UM=;J}-DCy`+z^n@RQ-j#!wS$8{_A}E53E+Z6TAPJZzHKz z^<(V3Aa5Y!2BNVM|Bw0h^M4IpUJ+pw3lGoX{z!gw;^yzv7u~1cp%;7IwqzbhiF6t{ zZTmBPmN&x{E^hUjQLeiiD~{yv*PGm}r|2ElS~{JrE6)^}Ha7IyrVG^@CN|EtmDS4T z*bwMd5a#J{Kv7X-#EdBRArR)4CtS`dOcWHe2FCjpDR=GTtu{#!UX!6swRs>`g0O>& zQ(yJJLcJVmPgKgvKHLNX=UTxmW1t>>4op&7MdN><*RS7{e!*QBW8D+>2eE9e93Z-V_z>ioDwZWSvnI6ulhb?S)_}n$I7L}C2`ouN@rYhvnRp! z6R8?8G-X6as4p1nHqC~5GQESb5l-GzWA`(My`Qf-ToqrbJ5c0Yw7UrLj(2~7 z6|l1YC1b(%A2b+EB?|ybc4)(R#dU||5@8HLQu>;v*y36k;Z$*}|Bb@XB3IF-L4n+b znnYGAsk^&*J9ZNn#U_H$j=H~Z6cE_R<9|{U)m7Uc>xP9GeK`*+#n9{pJV?ee-7vkOo=zO+zAnunvdI_#DLOZTP{EffG zxIYg~lvl|bCAfWb5>aS80w#uiC1c|oMldmCV&04r;UyZEsU?(!QdaVZKJ=nITZuvh zfi&2o@&*4K59y4aSJx{Jun4EW5NcTgE&2aCE!qG520*~H{HGZM2q1t2sG5cZ3bccxm2MtNOnrKBg3(1T08ojlYBZjS=qlHtX_$P_xWU5 z+A%#`nV2^G(1B*seL-)Ip;ObJ#oc}6&s;fqO4p2NRQX&a+`gcc^oV@2V7}K3)8s;( z)dPawODUkSmP=W!daf5~eR4hIBQS!bJ;WG7Ahg_#{Fg(<-zkp&ej;nB zsEi6O@;`=$s4RK^$l?>Er++)#9nK@FGcp|j91o!Z=<0uU{0IFW@n7_ZGFt!v0>Fp^ zl4J%D@<`VJZwc>!Hz|NL-meH?f@aqM@CAfWk~Ho{S|B7BvGQMqs>j<;$Ok$z=z06f z)j&Z5fhW`>kpxIt%M$W9KfXdS6aGh6_o9yTx3B+~JO~Ttzi%&cxm5qpP7R??k4Cz& zNm3_IXw`+ulW;Fv#5gxTpaFoRVpsQTXuLx4M|6erf{+dU9u7`7@f}@rPfpMtfHb}` zGh@eWzH|I|_|v5} z2FQ%zBv(B&&z(k(t8+sI6u@l?iIQbq!wQ9@kr0diiS3Q9!^!kuh^t4PEb|9bAsPq5 z56s(xV6+9c2OYH(R0MA052WeL`ysdp($?Td1KZXhh|v(LVk&7O-UNID3$>3;n2c2; zhNt}-pNM#1ITxg*w5Of7Z3ue>&9-*;UZk8jKB1vh+st(MY44p#C2 z<=^ri;5@QK-@gs&U$QJr%>TaQ`DZPy$^27C9IJe88_>U{NF~=G8zc7t#dxBwVsk0cdGJrz^6EL%W9qxC1Z{(R0pU z80xHm_WOTX`B(s1?teFHd%48-55xp$_gf2;Y$FGwBS<3U1tOHcGr02qplSh91|CC$ zQ}97Y4UI!e$DkzS6z`tgu?DpWN_H&CkQe4_Gbqv*%8gCzjY)*l@la5n?Uv*AcIFp- z(S+L!f^3}(DT{d{8Jl@;!^9NGr=!=Wfuh7;I+>YHmhujn*%=O&!1`A}C}8-=%giJN zh2ZR6l5Rxej=5I`65RslT?y;-Qz%sR4t|SE?Dhow8MjVrghLFjtag_z@5ji|h6ZF% zZoazqCzo18Bm&Px-7h_%r2H@1*PgxgKMbs%#azq;(uwlZe|y~i5?wR1{YSgge*qoi z(FR!g1Mb1rbVQ)oVZMRaBFUN{E0Iwtizd+9;m}?@fDax^8rc8Cb^MLqZ|^cgh99Ou z`rS@nz~{@b1ZQDBwd8w-%^{}a_e&ZN=06eQouWLQGY7EZOchL0F_wf(6>gHYiO*&# zb0;Zq75G~?^N5(wP(UcKvnDq~lNj`A_jsc4M^mvKp9l`F7%E2Yk$E1#-#-y7i{{Nx z7n>B!1QgfT5WvPL-+*m;aES7gUD%G$y#A!CC%Kyxmz3M~EKK4n=vo55WvDkfNC%{# zSIeLm_fS*EPzq?S)l%}ESNYOCk)03K=Jp~z8Fl@l8^;s)@wXfLx4`#5z_~0X@%&>q z6oOYA1~^f!wgZuhceOM$(V|erX6s6 zO6DaJL8|hE_1N8k`+j{{CVL|9YtF-;mpP7T6kqHno)|TbjQI|4nuIm;mG!Zf2mbY} zd}qpV;o<5n?#GqOPU1`UUMhU=@7$w@w&cH!)!#y0fFt+6y+8qy6o3shWJN){0Y0{` z$8R8_{gC>9Z=l%#gRW|#`nm^XFEl0${t&%kUH`v zE#q4}-2^jj(xoIEMv4w1ZNLu{2ZKo1=ogf4IhMbgAj9;NvcirQd%%5$6lH5gcv6;l z4m86$z6lArkEHYvQ}H_d5QQWVdgdJt{aC{YL#!frtSntN+{$0&DQwVO_B$y_!wj5B z%AGul2sL*Sz!<+c%o4k}Lu8w@pR#=+$tTlVd{+`Eqmb}#sx->~iSV)Vt1 z4yFSCGNN_uVK+bZI?2XGn?obVoA<`G#g!}MpX@$y$!m8bxd$~?2+>+qBf$p{ms)LS zC8vrh-nxMhg@6UPd|uli*UY*evQRee(g*q8c%Tg5>Re)XqzTj)U@w>A{=W_8U&7!2 z#8d-t&i;o>@Q=%Y=-s|Vm>v*HCAxre(f`@kL=!XE_tW`+?G?g!66tr{jLTU{LOE<0 zTucvV2M+~54cnHwL_=JtgRPciamk$<@im(7VFf4S%v9sp;LJAvjpoojjYWx@kExlP zZuZ1KJf)l&dby(g7j0b{&CMH2`hIO_c9*8Wc4<)-W{Qw78NWp;7E4HrLIgopdI)y7 zK&3%!CwMHW)s+VDr0B?NVNMI2oaQ{7Z^j102xWw(fk1A>Di~cIhTu614 z0|NBj`8rLL6CZ3kV<5`41!2c=Tyg#QwW9(mZ0+Vg;ZmvT$M0m{@|0Be59Uq&Po^ z;Y!o)UvRak6Nqv>dcW3tZM(U9HP*+MpR5edo405$?+3clI~v|?)Ew>}EL%L4w>LVN ze>Z=vCB5Oi-G06pj$d9D>!dlD5n!}Yd>PMH!d_ zbm)1`x;q_t5_$LjA5!>}ojxaoC%kVpHi#W4_6h@>AB$R=P3fxWrRK6`#W?NxaGJp-l? zzNjBqJ8x1B;&uj=x*Q=UZjnUBXIq{vCi0HW9Ii)@!nfXk>xuX)#+8-j-`~6z>c;^> zGRPar5P-E8fWu;rjef4CAn=bDXy88?_JYdG!WT+!K)%ngr(}gt3v5WNU$%D>{@cJu z=VgdZeynxXPq>V-AK0nb?6c5!6}dZ^i$ALJzxihvQUI|vIV;RTxo&*GsMu~wz+3vU zM1SHI05b#JmFC=0w`q{%1^LA_gtYzJC8|NLc2x;+i$qS4c+yZd`yJyD>ZxKbktS){ zV*cz!?iS}F#HakEjlo#M8^9SI+?S2RFsR@E7Es4I`-Ivy)DD#)Wr_76GtL4dDh@nD zVi;p$E-PG5tCo|zP?jWs_DP%u5bDjx{Y_s8C`kNEgu?uvIL9a7%7VN=@|_h$2r&O3FSQ(hd}st_Y^ojn9j_b5CJi zK(}gOwNulB$>8~^sk0JMeDs6;vy86a1hn-Ay10f``Y$UEpdsL2Zs~u7Xke|IWnl&A z)__n`hG9a6Oa6<=c~l|@49ZAAoBF?*oHpYCCMU}A|0k0Z2-pV#vo5spY_IBz5rQRa z2*GUZm*(Tw-nc%k59hf+)DWT(u&R*8*B9#4erP>^pN4PT1*S=KgSciPZGy(*SN<+A z8SQ@yI`sGG_*~nzM7T|Id$rp!k0-37J?q|NFT4 z|8ImA{RFOnySnTbNles_7qDP%XTG_$wUuuV_z39y=LIe^3l>V)9{~0&V|tV|`La{l z(OMSpxvbl>vJMX(UI5b_N41JciqPU%0?Ev14=Q?iSmY-QL{5$YK~8S!1_PriV}>*9 zdw7F(MkqlcQ-}B5%PNX1BtBistVnXKF2+@dC%8TY0b~pewASvAyD2LRWJ*q6^FE2rZEk1`ssNm+5s=0AIRcJe8{F8)$3aq3YmYm+DgixaI zr;}eq60KlAzVUNw!^IAalb>$}C=fHy*ZCE}`A!V&Ma0_=-NKv6~_ZtUj{ALduP_D`O=%UngC$8(-riLNg#7R0>E~3LKzAAfWb44aQG|yfXvD*K?#lKi;(h zV^jH7@%5jyAVx>#;T~Qgw(zG%-L8F9@Qe19)yLuyp zOnvXqKX|k{K%LTbM-ZU^O#$~i@*cIQrZ6pyw|@#hSI}81%)`qqq~<=A?|c!1gZr<5 z7(6gcf%sT(P=Q7V$Dw!KK6dYWebAz5zs3&qT9jN&_4{nidhflh7kwREKFpxXKG%>e z`@XmnA$w!!p#&ez=AF}5(`0phfxiT1-t@@7zJ}jhQ@>WEzIw63J6BiVo#h@|2fk+7 z|or_NWtKej- zd?)C#2kEwiN+MFG$uWFmr*<5gcVNwoEFhJ@cr-tK40Ws1(mrR_&QsDgdihD@Y8zjk zTOrqj2$}d3W^~zLHmgbo*A=*udMr*tUSg zA$aQUE1`FrO$q$4R*^rS#TpxdF@t>~Kgs2Q3Qv5)1EKpUKSTY1#KQ#!;q;Tu_Ulwye$Ju*rPvjre!?${G zmexPzn^t5m^hyb=UiFYCDto$ve-nIK?;5`_Al3roeFj$niI4d1{nY!!`)FpG_Pt@- zJO`A|I=O0zR{+0$vGI+2VZ(X`TvG4?{zJJtpsd8=L{1+QQ>*;4^7EEE{%fyy+ZSmR z&lse)35tCWy2TRes-qfpz_oBE`zV;}d*_mINiO|-s53rBCflmC!q~J{N;#4qHb}(z zkH>LXp3S2w-|m}r3sRdq{q7P9j2#XN_Lv`D?IBt64;@5=I-(YVqbrigZ76o^mEU0%F?aE~-ay+lmt__n7*(2!1bxH<&)4{OnjPj(n;Y^PffZC;TP~@? z#t}Hm=)^M5c1Mvhg2l>)(r}b1+u$7fYF@l^&y(a!pB>aO$}&fS;CpT(7p&D9!jy6y zp?CX*YD77R%?L~OtLTIoA z9#QBOm_>rJ#r1iCL91o-`BM{5o04bk9`7%?VLB#Wz;$rizXcj%=rt#AZ|NKU#DzP1 zz=i2W>GeTqm<@oPiQznx_@iEH`B=oEd<_P#TZ~QPuCl&511)2?DutCI$Wa$?vYC7? zU15;zX!22v`I4PEIzx0O;0aVEM{PbfmgAcj>!2FzhP=0YGv8duA=5E9v|cqr*0H>h z*t#x3cd{%H88c3HTF!&+-?RUT5F2mmUpbGhBnW+Q9BA_;E8uC~QijOrp~31$Fx+bJ zs3Op|+N#{MdO^k-1_8ayJ}>C*Q94NRQ-it5;k(jEREZf(XvLrvXT4WUbn|rKLM*e~ zDCd2ac_^E38k7MWl25017;s?EDv1*9ObK8Av zrgySc*9y_HGJ5A#>$n1bdwh)v?osI^tu~GAx}}V5O=K$~-;dWz2w=uH zylt&XdG z4l>rXHx9@$pE)R|aNa?HF(-JwSGeyC_fd@7U^)KSydel@7P>6GiR#@Q;CX_EezmXT z!}n<+dILN5cG~{2Obc~J`1|JT_bzUih0FCqXb(rCsLr?X7jZFnIhM5pK5p9-WzQE- zZ3@WD0tky`ln;qcL`Y8txfO{6)s>8P$4tYPkR=PWB1^xn?CjxlX&uxmNwh zs7nilMYnI`8>%zaCbzi@HK+vF{D$2zlCtktUNg)~p@JzNs!U<^&*jK(J<0=ABM)-w zvB_Gn-Wfhp>BSzlTNAcgdp4L;ZVnQ`v`(y3BFHsX{BY<)+GN+~4pM8;9T~H6LRyem z{PwdKzbE;bg=8rp&YV{lvK6n@$gyPB-n=LV(tR{xDT1PTH?nRz$*O+h-}$62M%3WA zA6!LjNADfA*hmi^&5@q zZ0dyfvC1`(hz`y))gS~;WW>3eH=4rKVV~>ewM;lnXkVo*+w2!sW1(77{#>g;5|~Qa zVq@?Mge@!GiCa=ysbSfO|?o=l3_nCbmAiVIR69o5Cl9Sqg2ITZmET8AX>d5#Qf`8ey(KyhkhE0?srN-{DFk;Va|* zGg)Mw8o!>2A8YO@%C(L*bJS=T(zYUrm`-eaKAyRZP5coaazky+fZ(7+K?{3a>&#q(94t%cNcardaN-&j%55P4bQonX0PB zY;FOF`rraru`Vr{J4&6M@g0N{t4J%iivEpt;wYc!;POGA>1;YVHr(9BiRmc|G+X40=I z%{#+A7%)xB;jlJ>P3wVGb-$s<+N4jEKU|Fqg5O-o`6zw?{Rx^dzK)6!t?;l~-i%hN z2xQp{q3~cmubFqj7P4!(FW{bC zn)9A}>OnPQGuwl*Wm88D&f&BU=1r~fG45u%j6WvYl6oF;=SfspHtL;o&W>0Lp&?cb zxX7jaB5S2LHUE_fNqB!1gx4%@eqideIBQor5|N1ve8v~#VpR1t(WnItKE=n=bJZG& zvDaNa_}gv!_Lt5OrGuw=rR7&oJZP)XF_P9qgY!fN@oB_M*7AtEV5`>c&0zXMkD5e_ zYM4B5*Ogym(db_1!YxmMlepVlwT|F1XI3hixj7CKUPlB+FGlb2&3)oCP@sB+)Rsi% zkCLLaU95DTz@7|#5>ve)&vqjEIefMFZVRC1PJ)3!4rO$yn#Pe*Ye^iYN?sBY7IJI z&57(qcbfP0J*U4NKq7#NbOCxXSL$j-h!CjTj%owiItB$Ng_(R zxrm}Q@C_Xv90C2_gH28#&%;!RsD0b?^8Onlf4~H@w>*1&8IZR8-EkjuV(z&t>M}L* zQ~j2(nF2;}j2slvmO%*PymI)=a=gxEB8nl#ebO6G(+pLX1wtW@iZt)zB1K=C|oj@8$>!eY#L zp4xSqFV)NTnN`rHVBa@rMqDXAZlOO3_tsmJF^IHy$W;Q(CMGHoa*p9kePJSa0cSw_ z;}0K% zKbw@U176yP>etf}v38>@7FufuwO1pwxQaEB0lQ&Bs=RNgqo0k~zu-(tdN@#KWDPBT zEZ8B5od@(~r|g@%PIN#$!axrG8EaV|FS1+|dm}g!yNk2I_rQtl(5#f3L};Oy0pWt% zi7?T+s&((GsZrU`1XUDybAU9I`3);~tjMwRq(NYfkZ#lQETb8A8x4^hf__eR!Udv& z`sx+OEms6W;A6^MySE%igzoE=`02%21*)D3(;KJ1e|I=nQ-Z7C4UPBwN+5Ob#_980 zMbOr~&Na1U-z&%CnQ_Vg_;oVBI`yaPWL_7`_p3wq5NPTkbB_;FU626a*v7|qZg0~k zA{rtw3k%pNx3w(`Zu<0pU)XzmT?bE;go$0OxHM7l$p+}A4?_zZyHUW z64S7uW5K1(F8!%Ej-g)XEPCUZ>Sy85y;XI?UW}J@!3M9MjBi+2sBkP824L}=$I|yk zoqNQYIvCa)9|Uo|SCl4d9iRd%O8l889l?@zpoml`D(qvT5CRX(FS3!Kui^$HYOSke zqQNhd%o)htlMV_m98d<*`S?SZ4Ivqt{~$SEP2hSZDyqX1R~`;-M2t(dd^@5ms=n~)$gx9$-uK|~$ynbtYT z3SlyTv9S|FrxVqNx9)39;LOOBz>xs*9N`5K#CKK99dti?pTGu3r;{&DZ4;yr zTdT&F9T-r-RPV03i;>Ip=*gUSc6)~&@?|odRZ)?C7eD1naxKw}dr@;sUGd74z4rJJ z-kP9Q3m`)ju!$sl=}BLCOpu@u2cl*sE5^)r)-+6>Nu#`@Q}W{(92=cAtMqf9pQwd3kb-|sUVfWBuO1~dNs@4V z)%hnqrx_o>6JCcl$sDX-i=IM-O*as5nVqF8jr{5on8ACZL{hZn^jZ@`mv;$~Q5+4X zK6JFDyuu6#*A{ zNoPVbBqX+l$fY(O5T{nEo=Pc9L_*_yi2YZ&t2@UaSUWxN{%114EV?7yGrL4>B&2%U zb8?0Yc1>B*KJ0C(``v@U9o$rZS|Q7Y*=sZy>WVWgxwlFshZiB!wSKNTUU0in&fLYI zShthh=**k7hjhCq{fRnNE?x53w@Bdk)qG3OSw}hBRP(kEtdM3WG5PU}w*mKV%|0Wx z9=|vhg|g<1q{MZ5D4|!eLRd(UYUK!7r;JP~3Czr^bxRH9J1oUv2$?dJ?*cqwS58|~J!NXAdPy+FSN$gU;R(bTMhYSLbxAXeK~ZdA=h zj{el|6}Gbu^1R+7v$J^(x;G}*x58XUk(FfT&2Qum!G&iW#2$z*>-rXy6rd_x)Lh;l z{KN6ZQ#LUV>!gTwC`Qdl9B{6!nvw!dDG$fUXbPHQy_nbY`uFZU5_=2jljO|#h%9SO zIm>L{xo#_5+k{l2LCg|u?!qm?jE3w3eTwH(;cHm8^IzNp)&hnj)M;?OSLP`Wy`vBe zQ$aF;_IBe@(RDl~TALy1TWS^Rt?H^Vp$P>+9ohkvo1z({-eG?uS>52_XsVf6=Bl)$ z#0){1%&BLlY)kBnU`YzC0jB4XVh)!5T~5OxwrA<2 z;Ny{8wWPlC*A~d!_l@G)JB4#4A*BF(movn#Dq+|X7c;g6NY^tH;U2%^f z-+0@E7@EJ1_9Ull)Y0+io1rhGucJZ(a3y)2TsKRtl`PYJ9bAm%qx{BktiHrLKK5g= zT%fX~Uo9=cl9N%UA!+vNU5gw;A;?|=%YK!N`jaGKlQlU?wC>|E662VT{}}CsnF=Ch zh|i_)Jk7DU;4V#3H$MNT9WStGm(Fvw=uj^M68r_<;HY=`(=q0Zz*8X zTkIL9bV>1r`N4Y`-~Mn*imb#uwB6u+Ew(jCEP*%@;$T9e=Vce&=?$csf8v*AMGKN5 zn$!tLi~>&_6o7q(SAsn4Qj+DlzpzSK?r(M04b<;P#XZIMJR(-2Y|4k=T5*7&<{5-7 zHcgKW62ehq6~rZnI^3ns6z$Of~*oY*9a|1KCeiFmwutlW^*0@PS=J-QUE)f^g;FNfuYh%_uaM1&!AS zh(kV09SiEO?j|?PnJ*NDtP+LSq(x=CD*5qWI`TfgBOBOO1oX%^@BAoUKQh*=JWm(D zmgt~Vzcqr*Wr}{L7k%r*o|`54kW+Qk@W|Y_!52e-A#!^`63d+Q^qvOq1g9oD@)XgP z9(_8>;MbFbmX++eTuk(j{Ef#hpdqK;)1jPX6{5NDZk6^cEt|9##CfZxc@9_=pPC-1 zb?~nFcFwhyR#-@?lN-f-f70qr6L;>vHfVL}my!!gMwT@3Ui zcN_yvadsPWIzn`zO^Uuu&MQ43;2W(wicETI3~VQ=CS+`^?F>T)1Tilra3$ z+-*kkBxI>J2MIdZOhhwv<}Dr|?4l*o_9bOBX6sJh(rVXiqWo6ttGSYZ^fZifO$rK3 zFPzC+K)F7fqAV95Wv1?KTIMD~hCTg#xk3J7S_Vu}p0mR6orCerlBO|{$z}Ci)Ste& zgX?~*-ic31P1?N;OWC?c;KaH*_n5wQ?r5h#t;n({Np?y#7|$Q``^AGNdYi>4Rgt1LXr27UM`_EqS}GW1Fig;#^(Dj7brDyU_p|r#Q7`8k z=WoLLyubY}queEsSeIp!<#dIFb**o;Tq0M z48n4y=*5xCVehJ^!l=ONzP39}ku*#s1tO#mbvaqS5U%yU>$Xmb38@|^0qd4R**EScgsOYgD}U@Tr4^L z)|NLcJee|q7J@z2SIA+c<8Wz7M$#E7kXJE5vP9mg0cT3oV?d+xSZ%rhiE2S1AAXDLMLA@IU)f}1-6F+g=+tcRf2^Vj!OreBJWe;iW^Xvj;s*6W-f z!NMeOfyk==(tB25JFbFDLCCE7B*spSpl54}tC zP4n_Z>W`jG*L~yy25$L=J#ZNq;seJ6zu~dxiD$3s+WB1@SP8Uk}TZVv~Rdcnh@6##n+*K~@ z>`D(`{9F&lzd$KYNs?m1!IW}wL?0G&?d7`bNzO+x)$C8rtNO&5Wp;gl5{%Q}I&3@K zaX8NUZ2Xc#{IWUGOVJM*S3V~{JiGxWvC0;+0@II_k4D;7~NszS?WZ0vxwyqJ8+7^WJnur%PyKuD3(dxm2QrIC);In#1P z>Acc!?Qp%vE}BFM^SN7#G==^Y1U|FhOu4*Bet9rJ4$C5);RxZLf8IvBYMYP>JwzNC z(!JNijs#FMX$71XP$X&PNe<7M7(sh}*1a>TB#0(em#MwDscUPFiDVo=P(?!LGk5Nr zM3AMgHjp;caIVZI;Qb)`C>MO2NXMNj1^3muhN*Rucw=&WU_g2EdKBA9&6a;-GAd!C zifmd?02C^3hx2!nS|a43n~&SMWPPXvzB$5iB9OhmGjsR^?~i9Eu{)kOXUQ<#l5P7a zIb7s4OgafY(y=BDBpy#jI`vl8*k_Hz2B*l&#G*_Ag+m}hz4g_s^{G|EfWFN4EDbN? zjk$EBjjlk(5!D^8&`TwLUlb>UaW1$Nd(!yzCLvUC$h+_u+k)*sVxlP(IJ)#Y`^z4M zHyfI-(E;*ml~Z%4SSde)znV^s(Fax>SRHL=_!ll@o5as;6DY>dB1E-YL9NITV>JfQ z)w{Qnchd7*ZCmOi4BhVw84xpcheAD&(Hvqz~H;x+=kZ%ocA+Rvuy ziE5u~e4+z~gQjgAsvdL^9J7?z-Fs`LRBHT<6n{KFtlj8z#; zPgdLRMxX407A*v(zsJ8mqT%qAOy@EkEp6gcjZf_kGJo^7Ur2Vub<{e-+)T6YFTKK; z=z4NQID>ywpc+zPNRMYj`@i;y_$0{YVfuFaEQaFXM!jhoLEzW7O#)3CNKs?ZEg+d& z;N4y)Sq4CH8Gs+vBp{=@`9WzYy*9V7z{D39V41dYMl*zDs2hAM5h4qzPZr5Azd15u z6pmf85`}8Nf$0F-isY3kgxF=UNol;13%Xp&vWw)4kS_I-R(wGQL^KR=6faLTKb?rf zpX!E=K0?+!4DK+iXs}v7)sLoGN3}eV2+XT{8(m>hQ_0p=G#ut`)WT{^A7^fuQu<=$ zcU?@)gX4~Dp`b3s2OCjK2`+y^9`JOmPHXJJZZ^FRVBmyL(agpY7E(KIW|?#e$MCZTY#&AT$&;o4V5*7{V88QNrAW2 zuK8}U<15e}j0ehRuov$>rfX3}VK8)YGKXlxjrmGUsZb9(M0WS%jK3hyZ%~s@trXNvGkRpCplXd^h;~%pN0|bT{hUs1HE`()$pJ%G^3`53)&zZf#srB5afqnX zQo?qtQM$&=xiA}5q#FK5cLsN^mx3~2@tVrmF>50%XxMxNmRrkHq=$Af)Cq>+tdJ~I z-W;r6GQm^_LoHt=4E~fZB~y2TsBfnJngo86y6@f9N?ThSM?^Y&A1ny@h_K>TGh}dRfE| zHtu(aJSbkA5nH|*!Ab~L*rxU2{Nnm(cl}LUY2lyd;lXFma-w?DSl!UN%h}E;%O*|N z)LCD)Te{(qVc`?sbw^LnV$gu2BO~k*vkfulzn!jj_4C^)jTE#tz9xrvx5b)9)wu~R z{x9r=O1`c{=DWuC6f=7s88Zj&7cH7m9@n`SFFK#gm-w7-vU<((hcKYS)xFbcZ}H)T z;BQI7!4qT1dlz?Oxe-M1wRH=xM9dg)FMn=-Q2oK9mR!%rgEb4djai*%bYCW#pG-ZQ zX#vqHA15dpQ)eH7)9V>x`E?(fR;ja<#+kS(=#GT9Zdfc5qLC&<%1$7h(^85z{gh?x5rjdFQ z-{gQZz+cFxMu~c!m<$?}n3(FQ|~=_px94NGiXpi23SbkEC*jcy9Qsg&{* z=CpsPdv>-d6%tpyNt;5Nv_Ds}E&BoI#HMy1FSVj{G8hT&APR~0V?!dv=cb*F^E4yx ze7mWrUlg`5x0rqSzZiR`AYGWS%d%|SHs7*s+d5_2wr$(Ceaf~@*|y!^OvFDi5#1Mk znb#Sak&%0^^(4Qc+wzexW{y(LYvrujdRD>@nD4#l%qf;#9!3?aTQ`SmKT?k(S~hl6 zofz5LolMq)UL$k*_`wK!=xyMHj`EnQmNdFAiXi<%r)3N47(n-twI?4;P=5PRR55f# z-Dij3vLv6yrWdUsHzjT7i#J?Lka;DqjO`4RWv}#?8auI5u6j(Y&|r)L|JTWGmwb1| z;}Za|$KX{}i()90KLPRR=wLEC6Pc6!hiMc8EK`ip#{{jM?Dr|PIZ}keP@fgATtibT zm}{otl)l;~>SaaOv&ol=Z$W{fIr>$zOqsTk+rCi^kslvV`lXl%*IC`s!tctgZ8*e9 zY@Nu|M~IzeA#1skzTXyz+^gtU8B1#8I#qS=vn!xYutvYN?tVKOErqtT6RHK{UlFH~ zt2Sgpoka^uY9Su*2+|x;>MeOoCrO)?G%BBFS<=^p6z)3a828^rC6ht|+@ABr z@9exc@f~hY#&KA953<}28Z7>^&{Z#`sHV6Ziwqn|Zt(ulxOBWM4Znr6Pmbn5P^ndh ztl+XR#puH^wX=T#EfTlvdSHG5=+m(B#|co4ybsTINX+|miu!VE!Z$1^?HP8k2_M%w z#fgK&yllITh1@;0Z{BC!DhGd43CO7X#E2PYJeWbAxvtAVQxC@_^ZQ`zA~|sho-uh? zC!0$u`r=vkIdeDwH(e~G{~VFA2lC9jPy|Du4V$*TS=auzabLbXE{&RyDFz$Tu9leMKqAsN>SR7Y>@V zb{qMWvw|QMG`ZM!C%#8}Vz7zp$t#=z9f+41s$sPTQ%$3oa}G=ml$>g{zyGJ8j1a6q zcf&1>A7E{3_l(4@!M3L`5;Ex5;#7Q7SNLvg982A>fQ0O97}ZwX+$SM=VT-Y&_d2~C zuFfiMmL9F_Hw(Jv`LzS59ewYnf2k9HK+R0M`wp$QJNWi;Biq+5xy$JtE<#5Dm^&Kn z-q#7>qi2O^u<$M%;C^o?2tapARXaqv;(u9i10F8Kak@gL_`{?j{!MOH7?oItRwqbg zmluO+IYfT~3NJGyeefto*O8vbl%{AJxelhc0(v|KGI-jwSZHRxbT(?Nv&U)gg3KJy^0?mf;t!k;RceG`|kxZ#f3FH0+61i3HEcRP}E1gs#dnz4>}mSmXC zMjCLRIM!NzhnqUZ&vIh?%=LmzHl_d-s{7b9%F~7d6NF z+9MOOB{<(4g#XRKrlQA(%;H0|T;(s~`M)_xP{d3M_aAbm-w)Q^Duf;LIx`T_h=5+AGt!9Si1E}T#EQ#waA3`sv zVhqvET9TdUpDs)IjA=D*Fyq6PO$MLh4;g!m_}6HQr1}qgVFjC<^{ghbcp7Qlm-5f| zvHDExwJvOvK6g@%77DRHwX60EF|D>*>ps#BHz+qL(-N2)0eLTl4fUgcy@tCp$(?9x z>t^|gVs)miThJ+xyjT{MsOK@;>Uc)mM`i=k&;fqk-a#V4X$h9oRgHx&=hU8GaY{^+ zbSR+O{Ocf%`m!d*i&R=Sw4#)JTx)_Vm#N$uq2I)8tiFdUJ3*wt+Vy4wV}3+Hq!XV+ zkP(nk0kVMpiZQzou5`0sFgJRR70&F;9;!8LUik-WUoHnVo`4JWX~g}gQZIRps$FD9 zVwwIa3SM=5zq|2_W_t^0%QNMJ><+$NNeAz`iP6bVv~UKS+>aHL2(${FKC$QC{tlp%5sTSW}vmMR2aM;lYz}g1P2s4v4vEi^Ga$-pSkj&->4 zcu5OhXyB!G$E0IJV;?l5olwzbM$U6UP=(KIq~9Mo($(Q=)Kz&)d&W*g3Mz|=M%<3q zEVn2Wqbk2tV?2m5{RMt}^KjrqC7r%?aIVk^AZ%ap3H7qUb5a~0*%o0g*p;(_geP*y zmHJ=;r?iV&y+1|_Iy?HOF#EZMN1+1)t-$GnMR)=XU}+a+ zd)m!ZZ+Xme*?{cZtSVB7PZhw|x{oV{8@FcMZ$uq=d(AEGNiGg7ky^yUTw`$F2#+zj z3UsGdoSxk!6S-MSw`)WIY#v0|NN3$#D*%8%wsQ(IR0dnls^<7zkLew+GVwyLw_xTp zL1(B>yTs`PF;d}{ONeXn++9;<5VBd^>m{Xt$XkVObc8!bwFG(0VYV-uR_tniv+~Sq zk3N#Yc^_;r%>Q%e4E`+%sG-Z-0fkFTU3wz=lJ4SInDrPyAqI+ z<1C*nIUC5iDIiEHWQ+AIwB?ZQ*o{oraAR;R>Num5BgXt#je=&A9j60P0!Y+I-%<4l z+>gbr1-Kamq3!Q4%>FTH&2VL#ireLwqmqH_O9*BP=U1^#%@kiWH)X>U6opstk7sv6 zi;N7cM6Q&TL`>n386bMHVa&XUv)r&Dtm~VELd|vaRH0NpltfcPN_6^^m#RfBjBLh| zFPpmv9ZI4phmoMsjOd?o0k)6}6IxpjN8H7Zn+(zNBNB}LgN^Obgj7aGd?Q-vJMlL) zJ{?`*$#5{pP;X7g@`xIyj(8#N=4lG)^#fY|M?c-_yMZ};QVQpMf=}UbA_ojiAtt^c zmPZHVd)%&BQ91I>biaI&%qEr3KIrWAlt1;c652M~|ABHm~$3D)Ekrlf{Y( zAfkSS)w@W_Dt>S*n)aGwsKa?ZtEeN*vcqk5xPrS1IMhA7k}fO1C2HbO?-)K2yt3)0sAMkD096p&*F3>h8b0tZX7|qO#+tL${Mj%n_yR;2zv=nJ|b}0 z5g)IxO(c!fx#0T(4!XNO4s7&(hgvP)0>9&x)Z3v6E3F%1)(!o1W7v?Nz6f|mZ}=Aa z*fM-MxBcg;v00)>^{?`(iSB5UUg7pD%IKx+@JM$0Yv(@6h4${h37AA#qYg2|GxY~H z6~j-x-z$T$H>KR4>DB^VzGJIG7>k-FomHEOQ(cmi|RjYTx8wQV}#0h+#-2f6I`HRV#=?ForfQ{Z~+mn?sX$YrqyX*|i{@+i!CGqk0+pPop0 zoWL24R^wdLg*jM%J)T++p6#QRBGMiLI_^A4i2kAd;!LBKm^w19jfpsK9Jl@i?KGtu zWW&x;t3L=WNKWK3o<5;|l$rKcoRmKmP`^U+)$ZsV1CDuLit+G-<*v++xpY6kolO^X z40h-Xxq%_q=)A+XL{p{E;mWj7&qPAiT1cJyAS;+g*CEkD7kN?%0FD z%;RNaJV0rG4n*}?oL_^j?rYL8?JB}^X?*?ly?-Ers0y7Dq(tYi=d!6d&vvTuj4Mk2 zo(L8?$ka+b%n1GTq}X4%=VwkqUB5={Uz(WPMi6Z?N9QvK;T<~Qv(NJHy-3Q%g&{&! zk-#y9k=I29L!Sm#o-088$$l}q{0_J`bQJ2~iq@Cyp3D;8Ka|t;cL9Kt<-W*^nLe%N zEHr=Ep}jYG-L^tRJUg>4h<+6%V~>UIyFjnf*pJnxF%$fqe*@{krT5^)>tOS=NFEy# zwtYC784d1zqQK0=v}2F$bgp3eYRZ}f5%A^It_WEYq75Y~E-5ROEt2}OT$iohcb6r* zrQB&G_3cOn_M4y_=?s;8PHKXSfJ3|dMM}rX7pj8c#i-hW@x-KziwhL6Yy7KZroM+S z_@OSu_WL6S#@8FdtG25rs9iJTQPJ2%fZnH`JNGo5rd7653nOBS07>FGK)!fEQ-<*x zqKpyE$lK9h%kkkYlowf{2W<%xeyAD{*?)b+=4S5y9w(xauNR1EQnfywDYp&kYfRUx zaG~%82Vsa4IqIP~k4O+qm21$??aewfG{jqMR!md&iE^^c;LB#w+EBqhA60vr978I> zHsb$cfhI!oKt4OKUvweNU1nOUz(KALcrrLOR{=moRF+V;@MJJ8cEV^w*r=uq&rc{N z;o9EZyWz}1J4@KAcZhjblKMv7xpW3&a=f868sLU$PY+6+O_^Qm8wCeScn34r=ncp- zk*4x5_VYi|=i{MpXm-D6o6n@CD64+4<%V1(48URh%#aOeMX6$^U*1@Qe>6knTPkzD zvq3oS<0j`#PVGTI_fVVVNU+jX2%`14h*ZoYDgHJ|efC*x24~rM{3M>fbn?^PDNkl4co{HGA6|gB7#1nf z{NNhS@xL1Q?hA?*I%t~uS>t&=4Oic`N7|#%tEU0{JK7?+tOE=aD#iY-OIFV~B)CD0 z%AbF}#O>PPIGs$`T)11uIxtrtwoBzZQ2Sv#+M&k?;t6p-!wq!e+ZwEjwwV6V(W<*e zrBSZUUMVB;Is@}pdGY;MIKo=QGKA)mBZ@CD`TdgZ^uv+7uEGPY`O6|C$^$e%%bwJp zRN5;3-}~jf-B?^(!(!X)l^_(gi+eF9)Wa1GpUV~rghuyZAo_l8Nz+iJ)XlxdV&C|rT zG8kCsydf${<_g|B1#2+%;SZEt`1t&P0#pBYVZwi4>VH1E|G`h0iP*WgIR9t$|L0OU zxc)~Y_J6^px`3;uT(7bR1-MWXvjJRY=eLRJx0&EXSU{)el^4nJK^DoWh^Q)v$nh7c ziE>F6>37dQ^B(<9zkaoU`^{?2^Lk%fUz=Zh>o3hry=vxY?ZX>FD~a}~^Z|sDAO#hr zr4$fAfne`~M8H1k>Y$VpQ*ogf22 zKn)RKnyMgRAW#8<2frXByyQUANcNOG0T_gW_`u=B_gd)4H-35Y2ys+T=0DFcdjU=$ z0|y61y#9;84|V_rN-8jf`Je(kL%TCZVd6R%{DU4B&K!Kaz5W>2NP%iw#xCcitjbflbE(pLCrXTZM% zh|te2P7=iL3G#LQ5=Xy!5WbU>4m@HZ*|>0V!Uw-M3KJ8k5MqSggue#au7RXJd%*s< zFY*pNpSvRKo}G`le{*?z{#Z%-i_9~8`THOM&;+r_C}^lCpaMLB{`4tI{OlgXe{C81 z2kq_JJ%I%R-$1zs@OeRL79{h*eTNeUgm?@AQ7JHL{u%g1_$m)YgaEzDDWD3VpB{vc z`&Dpl!8Q9$kJaxhPi7pz3ppXc0{Zy=e9b1$(szUEsNNO06Zkw{V^U&YUE2GxKJXty zLqqBd0MZ902C5GLKmkDn3jrxT$?W;3dBQnaJbXqxhg8{|EP!C{L+=h3NB$l?7f8_V-Oi4p?w4W`a6FsO#a3m^jClNYyRxQS9)}I{Xjc^Mg9^R zMr0>f@9qMzTK6hifLjpHa|ir#EMvW-Tebdilh?QV#a9y%nwL%p=PB5jhQ&Alh5kNv z7p~%b|9eHiQ&_tT7M%86$9s^bCjmjo!HoN^eEu-B`F91aSo7~Kl;@ms_eNPrM8P`Dgu zo&^%*3OVnse~pd?W^e7|`olO-$l||j9#sy?@2y`>2pFiJXYoA00V{y8R}Sqc{#4*! zke8=d(dW+)h0EM;)2}W9AcGMuN`NOcKsttfN5gi#BC=Y%#j2fUb?x{{ zNeL>)M_*C+$Dd8>1_mG5nY{jkG^{opd*tNG+?g8U6{o=b0~L|3<)vL7g;l9t0?ewL zZ^l?}QV<=-q? zp-o9t35L7K!|JG^y#ip*Z_d*is|sw!d`DoLsG^4CoGC~c63)*8nAwzvnM)e3X{*Qt zfD2eoq|~K;q=gy5#|GeSUTu#o>2A@hvePDE!uzzH(u4eLj1iGb3?quSuHZj16-(mv z58FjYQVy}1RjPQ9oM)D=bY3y9v`rmJfjAF4S4Fe~$msbNFOOF|&?Y+9 zsG8GKf=`T40i_MK+PnS%7b$GIfKSrv%4r$4g1$0mgRHnW_rZud9COyU1Ql*uW(;4S8kDA%dkTOV)iH zp~t7cBPnmr(~Db_M~8=+}4bl#)h8tbxZgI;dq9ql_NKk8g-QgHgf+O?&Ny{Rhr_XKdE0e z8cK<%3F`=Cj(U2VQm2MoK#dymRcZ-lHWB+{y=UNbc#zEwcwLIh#yu(+5~YuYqaQ4+pOONDILVKLU&bnYoMSlLi%l> zyuB~l`kMb-%}MASHOwC65c$6v?kC?H-kKj|0-CxB%0Xeb{b)`I@SDlD@iQ~(W|7}E z%P)_yDm!sqB6DVq=cW=gnd^>QThOsVTvHLUi?!BoAaHA)UR&Nkr?YMREdp9&AMN-T zmh`pdim8NCCeJ@L`v{~N+(#epwnTe&EENGO=or&~p>3AXZG|p?vmo-I7DTuOhV_`1 zMP;Jp`oYREGj0TYVgCrExa6XMEp}TE^G*-q_*#S)L`Z=_%|o^b+@$4Zxp$uROL<6C z?XOslM{&ItkaS3C&U$GACylhm^CADqSj@>l6`$RF^aECDrD}rNs*}PcwOKC%`PYX7 zo4&EISWNO?eV-ZRq~&p(C-_cMPQY||N|NwWk%|L8ua%)@ipt^(;E0e$$LzIX{JRsI9e{Kn@6YfN~HPjC39D4AO3ROxeVxYvOp0bKRhf@dwZW`?Uf1* zD?b=;8ujAVjbXhJg#@bI3PWTHM+jG?(HEbmrPBN`#V+p~7Yws|{m7@m_66@(oGUgs&BJ?7en}2+bI;46OfKaFKvFF%%r-C<+U7Pe5zmsD zVy(bxAs_a_czE8Vr`}G2IloT5xKvWUwhqh<4{I!>K2TUmqCjI8ISUm-2&~qq#|Siw z{%bRRm00e~7HEQejZi<$!4VuGl75-3PGIN=adRFYE_Zz`H~-;??rIHE^6&Xm-0M8g z;a`YLXB9*CwC+>wN-ja)%qgtRDWZpkRub#6wBB}r1e><}sO&`1Wi2ne-BYAp+k17`s8`R@X6i50^^3AFhb)`Fby2e^AJE>K7h;;J z%g>F}TKuKVmGY4(yo^)ZU1TqPp>J-=_^^{v(HP)tBi+^t!Pfb2!_o9>xF<2~=y<7T z6TOLtD&vSX9XdFS%4irLss;V)M7rfgmzdWoS)-sNQ?Y2I{|#bbV{eTV0_MA0Sb-Dz zyA`A>hICCN01m4kWym*5O%WI0Wn^Iaa9!JgBghwgme6|=wPEEI zyd2wT|G7~vYj)Kaq1tS&i9b1PNRdx*N#E*;E%yn6=xqA6b-*uw+(5sd^X4}^vHM@z zCO>J)*>|debndh;@5Hlz@M$5dI?rwAPGRFe=I#qjI9r`D`&OqPDA z4*HK`fHaR)__j$o8DpoV3TU&67Ob_ljg2S1D>EC?jALwKJ?;3Jk-AVoI(lzLvkH}J zy1;=6y*$_Sz=;N4?3H_J{@EPbQI!5*%A@Ok;*ih5W*hsQ0TMqC_f9_3OeG6BIpKnk zh?$cOt0kJh1_{aH%3`O;xY}IkSJE)YGAVWau+eAOa;i7CY@%4LFC#&&z*7JXJfxBxo4x`%0w4*I`E8)A`&6F@TOh zg&<;`0^G6s2GMtM?~xrTyXmd(BC`F`TTs5g9pDkybN}eE`Hw`@9T_@jP|$W&BkM|@ zo&)23V0y*8?jXG!F8TYw1B!1#QHF0hC@WC#1~39d6x=<5tYYw2gD3haY^+89HCA?G z*~OGIMLuZTkh1a%jO#g9cJU(cK!}U=kdF0t1$Su@Z0%|`Rpxhc8F!Qj@>^52pGH?+ z421f-hxFle)KUczQo~YaK$C-LIn;xKZ){HD7`R*cS~9>!@zRaDWN?P|jW2Fjd34*( zw&#!yj>$gK^i=jOW9Bogj?^5#%`C#v(n5r`Ms<6=8=p(pAokX&ktsbE%5+~jZ?n2h zm~8D%Uy@GR(+rW3#RIw^OkDXtVC}aANLR4;MfrZx{@z0rQ4T@^~87&617~k9e8i(2KaDn`m^|k0xVYYtikci&I{AA-a`RlIK5~2{il$qgi07^!wpl`W%wkq(M1b z8+K+L7U)jJ@&i~v>)7VELkrnS8F}|+5c+N?^w#5NNUSz-B~7&tFfponL&S?ItlW?D z>zX^uNM_LI)el@7bj>(T;i)EGL&#{EGWuj`1$30xgyptZ;iqV>J-+nUibrOhh>n<{ zT$@JV-styjr1s%rwhOfET!*{Qw!Y7(HhkyF?A~-&<{EONrT*k|NbPd&8vr5AGMH~5vEr5XGl5bf{>03WzckaWiy!xFe;RJ=V3F%7TlA+1>%fyS_oXF*eLvxy z;VL@grGRII_xDMhVVv{=>m6avCFMdtn zzAJ!Fr)k6tT`a{aaRt9k|I*p^1N^5hNk<#Ev;mKtS`m{b;ve?ovW6dv=yv9vq{RqbwbY4SJ=BKMIPR&euAdOzabTa6nABPas#^1UPC@uHP^htVBGC$120$b`tVbn8#mOE5Yc2+Q2mB5=8(%*;a9;a zxhgR+Tp#B{+$4k2Ilq$Y<)~beZ#Ny>_4sKzsbk;EPv7Y>w;W5g-Q)8LSBa?6w0k(1 zdQx_I13zouC1SP{5{=O))#irAL=D)!SMgAe?*)bv8t~lOnd)ObkMXlotcae{r-0|` zn{Y7N*PQ(u`TBCnsTMEaLcAX@?WzsYdUdg_>km@m8_t}!&kr+V0)cH?@oLK`|FF?6 z8a2k!SUyPT`-}JK=72?VyK!?jZi1L^5QNWPoA~2G^%cCu9``xOSFaj?&XAR~_tA!J z>9r8|sj~G!njHp7uR+I+#|q#r^lT}1MQ1V4qR!BB1*Q<8!8~cR`C6x_w@}wIJF(u- zN?D>rSG>NI3t~8GHgM~7>(Z}iv&mrtS)KeH$)xh)a)eH5um^IgKcumyBgfmB@LC^h zG{})@4^Hn(tE81bo|hE%XM(1&U7RaTginQ+*)WLQPk7Wi6KlZCw-MOSf)?j&4nqqZt*OP|qyM%L zAW>VrEF+vl{KZbrt}heyj|coP$v(-otLaG;K}R_}p2ZyvDKTk;S}UL-#=PdpCxJ)! zOYXYoai8;e5 z?ZJxPZq*pRvi|Oc$A5k$MYSq@nP1E&zO`#J{a}?7Zz3SVIx^X5cMM*QBkfa>FJkat zYG*^jX;5ItttnC`yFeb2aI`PV4Xc7?>GbX=`^)!-RBHl@51)2B`pUbdxWutG1eNg1 zy5bK)^Td_>?B`(hnWrCkb+j8o&G4HGmk}o{z%3@k>R0LW;IFzA&e_hzCdKCqwL)Gc z8xLIAamdi1=LyGt_a{OAY-e-AS`*k^63l~w(0wnaG_{FV);(Le#}9Q>bHG}sqXsSY z+`%^uS}LR;euY167WREDPW6PkMBXtVmC#PlIcC0G!DOOlnu~~jt}kL?Q}QI?P`0Ox z^>2b-f5O?BGUh!A+X9fr_t&y$bPlba&AipBKPHTKo}fMlPT{mxWxD+OWD2!Y`&9XU z0l?@uAd%f%7!Z7g%F_+S(o{cU%M+tNBaQ=R>WX#W3)lQBl}b0T541!29r|B$RQwr8 z@`ZMjPn)uDA8Kk-wQldfVq1u<)7^?mOV#@Z|CB{rXqkh*(&#s1y0bgM0N0imI6v0ooiWxx6NXXf&JWSuvBMpaZ@Z|NaJRzrFs3V-$?|c z`}Zn%U5)x#wn|Z3lP-hZOTYX0b{(}U>}(7j$(pa7LKng#!g zWM1!G_>a_k>lmjNcVYAEho?8zDa)jnQz2n1SuG|E$h;q4a>g}gru zdp;@d*|vx{L$@ZB{}z-e+&N!T=>aHOmqf}j=w@fD6i)>+Bjz9Gc*JPF%6@{%=cW&( zTmA9v5fA9o+A8|m8{Gv=FP6;(0P_5sDNW(>Q#lvgig_+!+O{ zfZrsSfY$eFLRzfH$k3?d9$b<(@}eG8djFh1NEwEruZ zFZVGUVT=eHSuq@?2!A_II}*WZ(aiyE?7!LQq^0;bIsKUU0gmE7lK862<=Oh_K3)Mo zc-ZE=hzauxvC7%3LWhizD8NF^L>#{8^GGy$gN8BbJ`A7I>$g3KCXj(6Ui?fCSRI~+xRZC zZy$JGH+Ao=@a%c?5>5B^PeBd_1Jlc$tSy{;qPQ713BP)F!}M7?X}5}FBP%MLWJD0{guev%6PA;F`IGK8GVa$RW1tL-#$PX2tgsj%65s+2T%*hT!Grh4K@9$V$w1!$WE{#WWN zt;T+ban_5{44S{9o4T3U86#y+xlPo+oG?(J+k99UiWS&T27?+2NE<{*=cFUF8(LjX z47W4ty7s{D{ZHgr1xuRlJ1#64Htz*hKd$Sg+)e=*x9^S2t4>-%&m&++bF}sQ_=S+| zXbRYMM9l&hs$92S+u53bMp7EO8U87s#i*TskMqi)ig2&HbB*LgwubIIT%udsEu7mbE7lc|khBw3@z z-*;!Xc#eE8CUm9R4FAl_2epU=L|;}uZwX&$rtn}jeQkVq+smr$FbU~#^%2hfH4yxv zL-lz3vKO{ zNdA!bk&V{Xv@83|6+Rs=qJ`t%Ujg=%8HgufdCiI5iT09rFqkRAVWrHAIUbC%`2^Jq zZPuIeRBWMA)Oy#ppUD}~lD#F@3fj=1H0%!8_O6EHcxHcNq5+QzeVt#JFTls#l?vnh zd29xjguA6?&tF>cpI4WnJ%0i0KONT|n;Yk!c7GdkFU!=*g5Wc+6+VT8X0E$2t2M$z z{d6@h<3m5vzf(IBPE5)zv)wQK62t{0oreD$#)#0JQvn&R-yR!F&ZX>p)f7`2GH)$qEk4Mn%vD z$dZ|9RZ7#B^z(qag%4waRcAdFg{JlY8eS{`c*X3C$N< zhR~f7+l;QcgAHR2>Er+nYO>rCs0+lvK!Cu&Urr3bZz{Dl}JRF4?eDU?(A_jgDT z0s>+%AE1TwH6cHP4WsDh4hG~2BY5CFi$49Jd_IWq{G1sDde2;v`s{d6-U zzyB+;+&~8f0xJZN4&%VNdOtXX{|hh-D4zo6maYPV#{@jt8?W@kuLJ$| zzypl~f4O(~_xyqd3H~}kXzB3qbOsdcAXVTGU>ra}Sd3RY4fO8W03j`(#1oG%%)Cz! z9svh&2G!)j{Y>J4C8RHc1mwYdmGg2~V-17fjP64?eyNb0<^vS!=^$GZ9o?KjME=u0 z`adLx4h*a+%-zhqyPF$`+{t1mhJe=ohd1Adi3eg_oL-#)uIyMb)-qkuj|Yz7qsu=?zX5CK34 z&XAv^_ic)Gr0nfKlzqQF}ZZ9BjO^;5%>z(f%Km!6~s2<#JzwTIaNJsgs zKjHN#%d6N#Pws6Bb5Hd#d_TlMO9DfKaBsJo7qbdA;Gh{lB2Fp{{0x`njC;QN#;0`es4pLw(;?Qm07+^e}5~4-xj6?w+|1xSbG2oAv87D5JUuYb*^b~|?RshvXv2eW4F5(KQl2Y!~b zeoMV^=r7k4s)w#4ll&_O6p|lzH712>b8UZOus8?>fWU$SdzkXFzR2!@eF7DlEkIvB zqKARx5&o;OO@QC2<_Qd}Vu#(A7YhT)%W;eoUNI&TLhXTdcL}ua8$jJAk1V}>#7~3o zxp-=0D@rube+f|C5kB3z{lcE?gFAF}@eB>JtH=G;dK!UHZV^EIDD0KPaP8;K{z6kj z?L7ex{XqOwn_0WBFUj5YYra1b{U-hXWBSv8xsGG(H@cxswp>Wja(vN@)=ByK60uJ9 z-8SfL=Chhlew;B&j#+W*`J7v*L55)s~Ku8>FZ45Wd@6o$ohqeMB+rX8NJ4;Vxt|`Z>MRb z@GjG~mQd}BCd1tn^{UZ}sZ3}@<;hchV~MP#!of|N6{ClgF{kn|TB--JIDUCDvIgtt zvyoSzk>l0&d<0XPT|vwZ646Eac-|jw?Hdo zcnWQj*vt{Bt&KKYA}c~2j7aK=6_5(0-$d`xgW4kk92)rnK`67E0L%f?*%1S-)P)>Q z<@b2}fj{=Hv5a5YUMsgh%k6cL8Oj@WS1q93T8@v8p7if=T+1w!<=Ax6wQoiz(tH`E z5_nB6G{upiRt?En@1NG-QjDse%@Msk9NLj z<6pcP;Z7~=MLGiXC3088#&!qQf4fQfbzbA|tGbU(&4<)pM~js8+9tq0-KpVXp2=RRg$!zI_zg_*M!EX(<-HbYv&AL0r zaqfdpD;w?UjRQ>L!*o6#7YWDOoE?Z=UTq}Hq=eX}6ie%sr)+>hRmD=?7pU?28J;KA z@3k{IBu2#FR1ZZ(XF9E|L~lgyks~$hxPCX0)>9Z~k5=u%QmaMGi3v}O$#M-4F40L% zjadE+<$pPh``r$QW(?(}w=m%H6h}M9D2ei;AP+Zl!xKrx4ea%d7zcE2{1h0(z-j{-IAD;F2{1QWv6 z4;z@jrVYp%Fo?aUk@T zF)=5DM|IwMkn6QzM^C6;Mx_5%YI!eT+D{L=?5s%z{wz-2nqP^^543P~%@;72hD*?v z&VebpK{nKeJ1)xTvF1U4T0}brmsiP)8kDFkGL!6VEY(S-3k=&v}1WPK~f~b z7BxWIM`t@s{=wWKQ)NN4uc+{x3g^f|mOa?pH`my(CeG%}a8F#T{Z zX1^Bwa4%8#l9;3xnFo@JMq+K2bX%N$Stj8|xQ7mhQkv~p%xB)NsJhKJw|YcK@6ySB zQN|pb8A=L^gUM2yBnGjizuX;E$6CdXnwoty>uui_@R7sxy=auQV$K1{swf_8EDY}3dYY5$z~k)_nb}4M7ne{|LI9%rm9qk%zcZ&;f^*Oyq(ad# z@UXAE=6`@pJ5|qa*ALp`TDC~S8R+GmwE=rKzDV&Ru&>fM&tB!UvT8Pl=^cHYq8OLY zC+Po(86Af#C_3ay(@S4+qmI@H%AYxx8N-!SdAmJhq2$$BJU0kQXgbD+s6`{RIz(ne zL2qTB8has5Z?!UWzG|!D$3=YV@_I=e{%bO8k1O&Uq+U5#gw!1V z?F+{KHpQMR9A4ry|+o~iju(2A(o6|>x- z-Gll#*1r!`VNM#9_UJg#8pd|0)glJUJFGSS4$*RxPxwwx{n+9qWq>b0lXpnTyS zT&PtXVx<<|jS@B-OBGc=-LQyW8@;xikYI$o6#BzJ0v(&VL?43d(W`ijqIi7zS_KcX zn$Ygf5+1{HL~;@d_7ju>f@Y?}wE22vH}k)|@4uV^L4O(mZTNrZ6X(!NKs<=Zr}sh% zL{2ET7HXZwyG#IJpI$yCXwhW?cSJ@W&N&%JUTn5>LxIXS=%yQ*49dlL6g}YF&Rgnv z)HSO>9+vy|t^n*vzR)Yh8D=v^TW{=&ebzsaTVFgBI-eP!gxJOg|&dL4KZ4+VM zC`1eyxk?z<^h*f=(9DXG20YxmF@I3{bg*qM`E4zK``M+PoTzBLM({T{AMElm2fI4$ znP=gfQ?FZ$7@j4CD085cSDbIY*6cQz25$%HnA*q1SN?jP0sOf#Ht*xdFtXb9k;9Tl zF?LfAqmL0?duT{m?K67(|MY&6Wx^01OQ4L+i9W7cBoTlYZ9XF!?PC_Bn-WQ(vHD7r zF`{=|3f1XOtmmbQ_y`i~OEGrD{4P60q+}ZXo!X`r(MZ3~j90s6OaZihxQ*Jw;slFa z;V)Qht|`EG{`-q{Ehyhpi1q~OgV=0VEg$Y-2QjdVDRgbiAulg|dX{jr@aJfwoiK7l zOj{?Z@c7EUuyW}|NaVyHMLGsAf^oAwtDhBO5^x51kTDj;1TYv zdDDmbuC1Z8_%LjitbD!#1UPNxXGr4B+osO|^ws(;kPi27h+)p&f(cEQwBJlE`9cB1|N9KpQUSLPKD&_wm+ zutd%Ga1CK4N-QT&?F#rtaAm1NpJ$9J#TeF9qDru?CgBY#Wf=r7VcPJOnYm`90AQa0 zE!)Tc;su)jj^%N zT`yAlXdYavqa{x2S!&h03i@}D@HMN{(K8C^gJ7N?kg~meZ%OWX*%8z<())hKPv!VQ z`^sSl!nvgQe*PC@=MW?auqD8@ZQGuwgUo|eAvgvR=8Jr!CS|NAVYvQ+YosY@J7%$usWm^Dow*u{ne%v14P-Ae4k zyF-dcxO9oevcQ`Xgor;l+fK?|syQd0;G5H$JuB*rO%w=a4kA$oox`ArPAq=KeQJ?w zl&=G6JynD);dz0;Rm4!innE0pXl$*}Tp@%L7-LnU6q zxc)k&6x}Z0P@S$|x9$|oO-~pNwcHd!7i)jB(MzV0#i@8*mlBHA-&gN^kC9R`bOk;@E+frmzZq3hIkGMU? zGY(&E2T)locm7f8VgZA7jT>*=sNV?V@oO$k5TJ;@-}*{)ssS=?<$>ir+zf(tMSUSC zPrhHK(N6e*x+C1b>7r9`-h%NJZ%ybtc=) z>I0X!-BS9Y5~$Y;OIqfITp{hU+DczQz!*Un@RI7;|JghsP9^r1Z|Z=-esH8 z^rx@*L`;u-II26Oy9?(B>RO(c_z2bZN}mkGPuDwa+_fOKaQOUEi(+|B9x_4FCz{m3 zD~)sZ21FnQ=X4T1{e_1Mc4W*^71cs^Q&%_fA^++^A>p4X88$%-gZfoPs!{k@y8DoZ zjLORH`BjS)=vW>im<=uG2ey=IL=qPiOhplV1zCP$?B_JXamgs^`pmewbzAln}g%o(Dh=pJDNy-xFTxCtJU z$AQ<`oUz0SRFd^G%zQaLpmoTF5}@j$K|fATY=VEUD`$jQ2q7~{pJsD5ZV=WxCynOA z8wZhxysDH3djnj3G$I!pU)R$?5L+VhXR^)P7jzuPgJ^_AUYtuuD* zyPcFyEyJpYfT|Opk(YG)ZU$XqP$j&PzizkSxq|MGKOf@d#b?(`ix??=xc30Z zb-;mCq8ssMosd}VmKgP%124O8;tg2DA zKWb1I^Y&F{f%|rk1UQXK8}L?-z}es!RNwd3fT{8m)7qMheCx<-_^qX`L#{6>>?A)C zWlG>x>S)bm$T3rvYlq*Z6rp*(T(j_PDh77oNv7PbNrKj4?F(-4fx6P#x#Ts+;@`;a zVGij26esiaA;iY%)E9Wx>I8Sgh^Gb~8eTV~k=7$J*m;Adpu%~#>|&rYW>C5M2`{b_ zA}UG{!H!(dt5AYsF4%Z%z>=(51*cmRc!(r*y@a5+^C=lh`dB--Pn2nDmo6FToZgzr zEeoWb5qAaDv2CR6ty`l^ZFv4psJkE8mzg!!vq7)>ReG<`;2y$9>ZmN>_>&>T3S`1Uzw!;_Q*=Qg{_qKHl)) z?aME#EKo4){sR}3=LSY%2VL0u?FHOz?~8-ARKzW}8!Fm9(sLTvsQ+oG#vzH3_K_{x zhdmsHX19gNo$qR(hHG|4-!8(d+<*eE?n_y4+bI3_w`YrYPnGO``Oxc;&1tc#jYcAv z=~Xl6lJr8g)u1|x)`q%(W2X76;c>+CjF$JX%(d?-R6xrC@<#8-X>3uX>mJswI}Lk^ zH->P#zM0^8Q-}LO62mdeh4e0!!W8DzY$n$@-7U7GGBC%gapw{@yLX_IMp6(_?#R~hw=;7Hn zE%ncrm{7;}!BW~cPTz_J=V+&eMl!k!NIe%?ba~|*g{uM_E}EV^qx7`YHI-3A>TkHU zou%lIRzEVAoXYHG>EUbnJmDhCpwFjeLa`#tb%I;*+iR>a*&xN?$dAdZi$8ZmOmE;n zYvLtb0`@+6NZ25Y)6A&iD*g5>7#+g3k*5Q%jvls>&jVx%ZHScNy>{R|BO~8ca;`jzvk)6tLTW81QA7SkBNGai^-fk&SvL=U$XA}y9a0%{N5i$2vJCB zeDlURlr^_Fgd2o$JAt!phk&oN?=)IR1@D9PPJfpZ1x!1F#RanWxOxh!vE@!CiMhVY zZ-Z-<2CZ1(>LN2MQz3}2^SWLP&`es|Ir{YN5~T;_1ym8jcZ+N87O|rEKNMV>U>SJt z9Uh^fU+B*ia()Vf@Ks1~%(YmrmlU^1N1QPDoQi`cwuwbE*^Lyf78%mK%d$;6m8FDL z1RMm7d;0j1+}&ah!#;3#P5^LzQz=`3y~2sAuQ2Mo32+r(&J2|bUWA1C-jP^8Wc^49 z384?abxKvw(346~6?$Za3?j`2prephs?ndUme0U1{z@%ydJFEW5$3dnH<)lVZ!_^| zw7C8o&}yZ&P1i`mdd|zEXIQGA0sP4=&#QIKfGjdhWE+}>T(Zzd-4^8)DHPd<8LnqW zq{Jr0bd;JIC-8%D1qUGNi#vB4L(VSvET=)$WlY^CKy_VMHwhxjvH5$pFIm9|IvS5x zm|KEVtITkyo zVQ|q1$VrAUUizn`Y*F!$uu0WkOHn?25k*Kw?w+(Pu_GS|)nWeQ+;5z@EvI~~d;_ae zu=Vx_DL6XkqqnQ=%r;F|5AxieCf0_B(FLKtlHpGuWc0FKQ3?HixwL*Ud_E+;i%avW zqk#3|M#Xjfp$NUL(+Z@la4(*+FLpK2F@}_zn7gShNah7e)3K*E*e2b&iYaNl2`^L7m#@ zBdJ27AzZ?cnbo%v3aiXAHEi}8WT;mCJZS6BR_LOAPek%8mfzF~)0cjA+jb%I6B22{->4mIg1DaWI8+%A9;V5waH1O#yjR6y$!n}s$uXC1h0WQsZ5 zkIv0S>78Ti{A{l49oziHjLk+JEYz4LRKy4`-YtyvUrC^2Txuy-KW&?p1C!I)#ZV|o(AND-j9f>E;qAuCtrX3md% zc`5v6yg5V9Q16Fnmp=y$EIZdyptf{*9(%}fqZBMf%vs1xBk4Q!IN!gr5Mr;h{X8@( zZRK^a@Jt=oj`vKV_7s+Hld2nC*6|>E1ok0EN{8d`8Av6>iM{v-S%f$u;U#{Kc4@v= zOkR&Z=`Abh0GD71)9GO;!Oun{mbBCA%~fdoRP%1NQq-ZO>&l54Pp z9Ff@c(mqqiv~Zwh1qVfIx$-;w66PsrPYDEU5h8LTLD9|ADH~EKzP#k-bV!0n1GX}Z zDrBx=r$8ks#nwVEhYtAxHBjz-wBnf3>=?`a7C#Ns#)FDj!}$*|?!}8@h>y2c@8Q#s zU*R?ZTo}D+_fgrkYGCRZu1P*TD6<>Ea5jn&;hwX+nhZH%iL|@0~CwMe4GJq1s|5xk zGypDh|4$8h&2G(?nu>f@rAddQ&&7Ea;RG=NT9a#)8;Fe6rjb2}GNVabQ(^V9z+-?x z!fJ-U;&9|^YOJ$EBd3!WY7YL3N9r{_zVMhE{tmc@uW`Qe-zKSiVZLy|1-kv7I7IoU!8C zvy~b9n4;m~6b6cS%A}K#N#aC)vP)kjKCy)ojCmV-DIYG(1OxtmK>$W6Ppg(&4#iZ* zFBIv-FNeB5mGxf=#UVMH{XaAF174PG-|D*793i7tf}1}s`2~Y){Y*{hLPbU7+ZS}A z#>OCzGx}fx^>W=hYusN$JHW5Kdc}v@PxK^MGNUx2%|?-sulG?j4YGib)@r zotiEhBg$Z(_z02fUmPLS#nOruEqz8^uDyY6bHPM_SbdJh>3nhnp@{VXCtpb6weXj; zFIv!9yLemH(r$N@|5(#*A$0t6k#)mlEPs zL7y5Q{!$5BE`KTpI%XA{p6^E};iT8Q;B<)=ttQAYt#6C1d3~-bx~sBlGBBWIBm#P` z=Q_r$p{}kfOxsEa5#W{a-_y&)_^PRhMh0pryf^OI1=|^Wd7W(Xrjf=Txz5SOH%OKa zF_9(#9OA^vC|OfYpmzQIG@}n!NF}VG!-x3r4 zkzM^m48b2o@R_I!M9OxnvpJh49@>yEwyV`-JLxT23~0Qo=kT=QkmVYFKD9`{KJHEf zKmovR?jvu1N-=)cjhxj2eSTU#RIU~4LAT7Jen$7k-ivC=fqr}DoSrO-uxV$7|6+{Nr;N@ySlV}8c zg(;*!mRgb;0ZA|Nu4JX{`$tP(4_bf&tTcpgcf4@sJ)gs@3z3`E8hF-+nhtMhTNe89 zf><$tdHmToRvgLZpV_^*XW_Cme3|ZAhAZqGva4*I*q>pYgs(XSqV6!88nkWyHk`(^ z3Y4H@)SjymFW`&rc0{TKOn;PoZ#m8wMVd1N~b$ z!|{H(Su|e}95#jTdKQ_$W5I^<;<!~B)NK2D( z|E_bfM)O~UNtwMZ|GqiFJv(x6kiQ?@jwpd!L3&uWyzG|8&Da*o@|^UF5oV}4tWOOb z5~>N;&Bh{#z7z#Y&*HTTdWNbQ-3}HFvyk@;0ueZ$;Ogw(Ooo79J3aGk#5|v4ixzw= z#6Cg-#2)5q!Zzpy2K3ADH4KxUc_KK6YS>Z>#h|(uEcV2b{@8KXkzWuZ>Z>&5 zL$wM;wEAJvzbM0AX90gR-==lEv)mG*E`5R)Xwqs4IErti(vCN#HaHx|CJa)ukCtiu z{c*bJrR?#K4Fx@Lt*&RNu4!id?~*`?Y@2>A&3d}{vg4F+t;gbjMC_~6*8^t?k*6kv zxCv4q^*H)rcC|*Lru0A(2#BY9stM8V1^2Hzwpo5T`@o|wbkZ=6OZMHuw(@xuGoU|| z$~I%DpZ~}>K`ISyZ}daS%xnz>Dw+uTRkJm6zxaYkK-+3qu%u3;v(&|{jo(JsDHK7M zUj@n6UyEq}Jy7&HJQmg!^5X>a=8#q7-Y6oFe?Bv2&}nMUqO6Z`&_$ggl0qluLf;tk z^Xbyjd_l{w!$?(ARBaML3g}R}lr-+p&0p~UwB9wjK=mgMqf5?RlE@qkbyu{L57i3{ z`gD{#dGoSpMFSX};LP$keOBM>ymoQ{S7IIa!ZdRw5oS zpu-YFS1r0(YO*MKA-Y=s7H6?h%pJfT#K>n`0P*HDyth>|SXe+lEPVSLWb!Wzjiim&R=4n2S?AJUv=nH|=JAQmG&F$s7($$iQ zHh`=;K(vBo#uo7EVSQ5&y7%U+cnBct<5&|he>8wpl0fp_crSfm^G>iNRf&Ce-%RighEVgjQ$*-G1MkdW5A&NTsQbBH6;J`VYl-^Ya2a_*Zw%5c~W03-JO13jA{k@jxI! z{S=Luu>f!p649fQ-rD;|^Q=J{0tNyu z35a9Y^HdgsLO{)hXz}-pzxtKzxmyPbbA~@Yc6D|>1Y99{+mm0CXLAFnK`emf1B?3S zX!oc3>m33y^S|uv2Ho#B0X&T6j0J$-tu6!jd-wM(exrUuMEVyU2+$EgpcuzGzHPHZ9weBTE2GmAZ!o1!F{Ic@+K)C_CKk%Xe-a$b@1NZ|K0s$y2 z4SeouH1o&zbt1fxt74jhf`@-wpt(r>TC5${T|0e=z{vLZIa%~8go6UJ{{Xf(_}BY` zUO>P7!anX2{<1m$PConsy!pKr?ZJfnv^st<{^F~~^MG9Zq~V6BnUO$!Uf81m>;GPV zzbdJ72v^wK*jaR=%ZNt=qTcu0=9jP&vCK{*goia|cpj zZU*W47G?0yg9j5U6a*;0?*>%0C;!s>L;=3DA|&W@?h_$Qj`l41NmVd;PpG}yedxQ; zWar{2P=CcnFE9Ne{w-z4xB_eK&&vtb5(n8>0cp)vo0{u*u!WJ5t+(ZtIzD>NcCmEn zB^i}CsGjt0IdY~-TKY|Rn#$xJi+I90j5%E$<;;#R1-U+`MxaXLF-IqY!gbt}R{^T4c)7Tufv zpk6+QEZn@={wXB-D zP>HN82r1_sKSV1VrC0S!b+1Yrb0c;upM2B7$TjGlP}`wDI>r_Pw<&cATq=ar5*k9L zGL$8mQIMFF)FxL2>$$?2!SQT;5Gf{YG9kXjkZ8f~yt0+#zJZv%B`Jl7Wc6Z>-*F>p z!=o^1Z32gByc}+s>OO4i%N$k}E`w;Yma&wpzhl)QZ49+;RAJ3-%^4fA1)LBlhm6>9 z+l8hEgu-5Mu=8qHg;&cr7S|;-oPXmOt1($w?y$zX=#ysF-JY_0dThRi=`@O0I*GfW zE;A4ocVbAm<}a>`Y%-#Tc3GoZc$wro62u2$7J4)C7uEd|Fx>B-@4e?HnRn30si@F6 zU$>If&o~HQoaNF2wi3BiPx0|G$I;|TeYa6o_AH#r|S}l{6*D(VCXP0GUZ8S zokN3Q?UGEHDa3E^iy%LewfOpR`KA_7x1*10-m=@mNJ#CjXd?b(Ec+tmS|DM-D$e20 zRa$+aBq>;1;^En$1XT|UZ2(zl=TNfN>vaoIb!c!Uc@{gSV$bprV{_zZTMej~RX+b^ z`G87D(teKffnC%)oG>Mr`E8G%u;)q|H!D$5A$n-Jc`t<*BQt5V#1D7&R(;G)oXM>- zA_dN`42sWsSpt~ZCIdEX(9g5>!np4r3Bo$xcO*>N;E#3>>ytFPO zoSGMz`5JP1 zn<$!(>kIYl5$t-GNeZ)|LBa>E51Hb>N*+VS9C5Fjs+VPN(t7nhGCA<2aUt{z5rnxY zNIEditZgGKHhXG3jW&<@D!J*q2{HyDY;xLZVr5o?c=O+L4ZiU-gsX|%{AoOrR2X9g zgSZU#M=V?`0afW4@{K$#dG9HX>$29hrkwr{5LdZ=aaX0ueR9!RVXI#SRz+(~YfcI< zx78Wj9sqyVf7IeCQUXOkLJRYRkn3*GyLQhwv|EYIYOxB3db4!MA)!)i1B6ErOYRA^ zmZaB`GBN$ZgW@y9Q%5upO)`kV$y3$U_JWgd*_yGk{9 z?IlSC6DvjLA}(jBNz83V&l_p_Kv*T3sCXNwdqv$Uz6DFrBuRGB=0@M}4wCZ?iy{vtnZY+8`DvMaDcl zr%A|l_vOi=&riYgiQP`9nieok{yqeXQL<-um)B@{+(hVq&=8)kZe5nH+THk4R9?Q^ zhucS?yvtu%@b+A*VOFU$xY>ZM zo{V|4xF5waJk_4iT3K5Jr@O*vW-6`@u#n5{hteg5a_a{j-0Ra&0(uKYhkToDM~1AS z)3rU$aYE(g1m&*JSrQwNw;Xd^UZs4;&crKq(*ggjOOD_F zTNB*DnE06j-#xl@J?kD4>h1y7Ylfr_N}1is(?t?%No(hWe(Z1VK7&GfFpiB}E<5PU z?~t^L%hWaub9KGXVJX=D+^4icD?TuJHpxxS)^5VO-G;jDo=*8YF#^Cv8v{(OH~Yl@ zoXoZ>OZDLO+x8UU-irz;B{x%n3cgjw>gLc9Le*-N{d^D6ZaLZZM|GI~8aa{#kExzW zx5wmQgkJO7?}^(ed^14iY>73-GN<)Nd9fMvtyO$>fK-xhoS8JWu?jlu52H`+*;)+g z^EPiA>XZ96EpIHVolkP7Li@!iP6@+2KR+5uAYwH28?l)=E@Fu!fC? z8MSI#+$PS;bo<$v93=a64vrrC0%uVcOd9nc_178Kf_W6q@Ds8lwaC8Z^ySooMq#^k z_}om-gs1J_tXAAG^yM?LCMLaYpr77=Cb4{wpeSBd*SBowre1w!r4ii-+@P5HR^@30 zUCdKc_e7Q~NxUgQBS_MW-6Mcm$J_3jT1eDQ^1a-^!!rW4UAk58-$&=#GYoM|=A*FM z6j36P$g(0r9$i$fQs>)7(iIMv$+^+TiR}FGL|nHJb02j<$GM z^(=%912U={aZ~ZS-RI7jKJn4Q2&-hE>lW#-285vC(O@%N)}py<-yN3JJBbm`E=`rO zYLcV?27G~ki$dhii%C>qmxRMAmu+TgI@cVj32Q^X`&Qp#pw5i8zEVK?zkoHnH0Ls% zg4su}%jRH^bVJ!E<^3bETlR_~?j&z8dc2;Zv10!Uf((wyoE{Bba)FvMW^C6~6Js;Z z2LRe8d=2ym(H$yK#0Iyw_f5S=4P|t7A;z}}wik4DME>TK7jpSxLeNV~qNQb9s?=kMCh>DiXQ}lnE2y5tuz+L~H+1 zR9a6`OhM{nl(=1yyM{08XQRu&d-o7?tRmhpqdtyefAY*qy@JUjEQ1EoBj4WZP4-g) zA8K+J9HWtZ=BC`67oF3lTZ`-J*hn$kFRd*L2Rf-q1}C+MOPA z-<3)A&NV=9U-D^Ti9#>E5E*9C*<4uVx$hPW8Qsst+7z0olCq`AkNc*djh{JnDG27p ztky#ck%ioSED-djOZw<3AAa{HRh&b52S^@NwBTIgUpC{KzCG2}r@-fO(QYu_-u5#{ z>9SF2l2cHVie>JNBkL$5-?%KVzKtwnN@4;czoul^Z4-0Vr$Y*WVXKz)^ zQ?x|a=fi$v3f8`-VFJ)rq4fasOT z?4UzciQ+9sW)fM7%I&Is-og4o#wIzbZ^&QdKPGUgOmBe5nJuJml0#eY)#Oq^EJ2mW zVe@l7{1lx1X%1Vkk^6z{{SKOIOBi)<4p)c!<+bB5Trlj$NaGFWS}e8>?9@BgW5WTl0VJuRPMGj2_O0d#&q&NTR^~&!%r{#*Ut@{289oe;2VCBw-jKs+ zR@7bmhr4RaI!E1dPK6sEjn$t0??z8K9e)7Gel1ELOQ^;1FjKaH+yP7;9(`R}dB+gU#B#&>IMYj3avsnVg! zlOFRrcwjyi*3vPlD9r}&5&X}uYW;UZ6P0=#?Y&Z0SWPzz8<(}xnwLtVkOSq|(9}rq z5gTu&l7KJH(CGc9!reh0hxi$3Lo#zwV-ypCa^U0`sajTgG1zHmC&R`&Q>MBqidv7q z8jP=b^P~&%8f$U9G|Di^H$s-PHVco^6^IUly+Z0o7k7(|6-gjRG0!+5W4{Z);xE}* z2qIosQCmS<3myZLea;un$W#8&+}=3eO*hq$w3kQxj6mqNHmhycmoO_g=s4+So^EHc zbS`R?ltpZ}BUHmky|~B8nrrA&5~E@$1Fvhdb_Rv}zNfuprmos+2-F&KKdnwH-rYi% zJI<)h>T-A+TS2A(^Q2FVxuCt1cEOYy*)w2A&@%FiPo)Oi+WzsMAn#lr&U<0)!)nKr zX6~UDn~$!`qb5xrTterO*0l(zgP<1Z2G!U4yXdQ4k6sveR(qbsW&vSxAVchkcBvkt zkgxN>YW|w%vn+HIZnn~}xKO`M?zSVPT?QA+Mkci?qwFT~K{aYVAtDis)JY$clZ6x& zqBSFK50iWr8djv;D|}^3wk>qi=4O=k)35lhXa~)e!M>|u`#^UZ!v*NKeT%e+VKRwt zNxB5xv+s-2Kew&npuefx#B#NVYuTP;I5LaA`?y3A2d)Vvxf6890qx_=UORYf=fu$w z?{a^_9g5%s&1ntX6R@8CG&Y?~RBVC9%j}*+d*A$wKR$3^WHh}xs>&W^4UGe9nM0cx z7H)A(_%cmfYv0zdkJ4-R--Rhw8Pmzi_A#-p-m(pD1(~-zW3*aDxC{5K z{>4?>c-RdUrfETg!s+U{k6h-uF3fRf*kZ%ysQQlRm7Ijxt5)nL`z&e~82-6ChBr9E zU_VJ5WDkw4_z`;6n3_FA^Ib%~) zko!634^;Rl2EkE3L9ZEG%)y=enmmLs-M&^*8lX^FMM#@~#)Lc`x!0KZ=%4Yz&>vB} z&8YS0_Fw0jYu9{$!0u4~Hyxu-l=t~2OM>rWWWk>UYfm`n^AwQwX)!m;`k zDp9a8xoj=IOL94s6R`{WoXb1eT?nIvgnDN3Q*xJYFVEDdaHXDob{_j-`9@a@`~ro} z{jtQ(%^riV&fHe_bKKQaL`IvGaqQc8&kqX4ekR~N7Dt~)z#Zm^bh6eO-Pl-cWAtHZ z+CD#OPbgB%IsPSVJyBti2>a!{FJsz(&1Nd;NoM<@@6%5@_ax1!4=PU=j*%^cUH^K^ z?JSQ3h4A=*QE8YW-wCPBL!+nF=0+t(Y52i_TO>7j+`(6tpF(g2^5ol{u}n?GP`Iek zG@M&FN<=qg$-)?XSapRj+5>)b0@j)bhU4>~|Hu=EfyKTo6;wGcq2_Ja8M&cbGR+;< z(Bs}PV~OYT#8pK^+)frizzfRBIMUG{7k%MIs7cviG^;+q_0{{b(bcM07Cln zXW~orOb1a+4v&3MjkZXpkvXr~NXqlhF?Ba}Rf{njU5hWsbKuKO50>tx_k~B^`>`4Jh4-YW@}8YK0b2o+94NW_>o}#maYOR87Gk1|NO#Oh{M%@jIQ!qMDh; zfRywxTgR~18ZXD#Yc=q~0b=6mG!7j01}$k>$28~0H5X}TEPq@5fMIS8ZoZ0NdBQ;z zD>57FXaNbMURU-KnZf&|qU)elocX^L>J)R*Wc?8Ri)T(Qah>&of3HsHzC#5L&ui7V zoi<}a=Jo4M)aiQ6$>N+T#QUHHJXf==57{H+RNL+eKdCD544NgnFC4(9?h0NPwNzP{ z7?TEWuNpKjT>?5~I-wU1!*oymNoGdYjNOUe@VE9M#hSjlO_`3I#)ZhPDOpWZ4unzM zVxx-%GQ}T|IIMFD4}s1SI*n(givp<0|*h4OAaaj&}QeeX5#|(XV+k`uQB$ z-D@4DNRkIS=M4OwTM$IK;@2GBO_8RCepa$Dp)>uICVX981<~kc^~y;Lb?>rAb^I|^{aDhs04VpXED`cSfV&B zuIzfceyr@M@x&*&*{M)4iMS@dd=JL-I^i7aK}*a=GS5_G@ZDJ^&-vQ%Myt%-^w@G7 z1@`*no<0p!c+_Zu$57&O=<;mWz|R3T5bPxp9eB5Ip{&NWUJ*3I<+9X&2l$zJ8GInmW&wOrjBQc5!Xs&{wgCY;8MJ|1=8>0wN3l z8_}@S;HgeqK2JC}%2pY-wn@CckoVF}vDeSwYiv39boqr~^sYKz)dyKGzRq8!MXiax zA5Ta9l2kADJ&O*}$CJ&GK-nU0(wa6xa=a88)A}QP4o~H=&G}_z>sFqiVNpX~ z18lh!BUWYF=(Qx)B^@{E{c6J@o;WM!Sc-1|c-eeEU{(Sjc< zoUAlbgS`sxfD3 z+-;(P>Pa~nb&-HYIeTFStA$5VQy4|7A05lrtVC-Lp_M940sDC!Hg0{)D$*o~$~}R; zEP7%X7bcWmbRFGFT3#pBS7ed7Ql^HO8M+epsog^=oEM#Li`0nRFX>el=T-a2Ze%s3 z^hje8pT1+a8iY6Q;3@$t zO2Kl;5CeyhWu_`JG{IjW4$+^t91qt$TymSXuZ@||U&0L6-+IrDe)hWvek*G;G^T1l zKAZG!je$Kh@vOz(DaqS>{qQ-M^J990+fXCKK@c(Hg%KV>JqHGNR z$J@fj%<;dc|Jzt$XZ`c%|Gg4z|8H*#5?!>GL!?%IyHvx$%}p&Nh#(M2dl!mZ+rb== zNaSK6Xe7D~v`8dc89(U9LT;|pP0w%Niq}7F%lfW2lb7i%8`t1uvDrBFEr=69Wq&?| zt^jX<7=Vb4kdpwQzrR02p1(f=9(5HW1|Z;1%wa<&K+m2&#?!nX14@to3j|52aU4HV zi-Ejsa?1q=d;4++JKI6nXZ2?4=98{)|`M85GYuq%-HBOtTBJONIe3gXHBEvT!j z0Kx0~C$0Zb0x|&wA>rubCN9A(+!GMjh7jP!3j}&Tm!p`N7eqh82?Q9?*Dp0lSTZ!w z{(X4f?&@mV><;b>_@iU$e>YYF5$OPc32@Gift`WAs4(-5ZsER^u<-Gy`^Q0Hey8*y zfC;^?d;9@N006mw3haxc*p?vAK>2Ur7?f9m&O8AM{1RGzi0%M>aNzjksN z{3E-0`|&jP^FH=sb@kyvvf<%EzbX@c)i93!Pz&Xt7~I_OQvk)jQuC44qt79F-28m` zWnO}XybA*V>IU@7lh4&LW_R9%wn`1Cb2&<}Pb&-15>C3Z(wcihHz7J>0<_i{Il2;mIe zd00y$m_t&ugE#J?!y>Wl`S_bTqNR5pJ2?^RRa=G$lYCHKdHs~@_dlO6h8ndddN+iirgpSm{=+&XKWT> zFp+D}`9`d1&F}uYE<0j_@4YH`fUpNw-brLSSt>#@f&PkH$ir%8xXvG)rG-eI^T*oi%+=6p_jF3Eb5S&;XEWOcW$5-iwASXxd-*#-;lP6F;0Mqyc9!X*Q%R^Z5iH4!5{R9=*d;%5boRCenOGJMeka zu@t3jIt(ir#pulCwL(&JT!Lnnp)4H&IR!I;2GioY@aSSMlP@wAK8u`;#EGl6#IJRO z;GjPNtkBuU3x9od}y*0Dc2aWbsrOO%%0=&|| zbyx-83(EBApxg-BswB!yw2;k&rC_xrzr=1*-<57_PICH0+pq@z0n_KHV4HPbcfoB7 zhD7O<567cNeHxF|s$9+WCh90<#!&l3k-|y2q_~e)qxO|TVU#HB7EBrkM+xjvn+S-ss|MXpm@YuS`le*TdrkTg9M1--dIL36{0sHIca^K zMHGT&@Iyhn|HgeQVPj?$%5hjKO&k}JxMpvKXSOcvf)Bx^W$EE62CRLzXkD~C;_pon z`PUC|Uq(k&@(p5Kp8+C>!LL=LUt zjxuB2?_Z6Z@;02YAWo3gEX&4suhEi_00Aw%-ZSt`Xg|e@fPAxOo$yZs<~c*PX~KnN z>0>LfTwBRjhMLUkzgvhDt}(lD%mFP&-H+!~KiPC#bBPla85(OeJombx z9Y0oHs=UY51Bj(@0fsA%q@o4AiO_f~``y{Ja`zM?!h{NS*pwoPzz~hpb-qPrL8_~X zr(KD1s>j8=rD%Jj`|h+j=dU~|ga$NUP5bQ)xt`Dz@=lemNV3Q=e%uy2Yf7%ezw4(e zlg%a?r>`cVaI~u1j2%PVE#v7hiWMyX^p!E>$hU$%3ux}5>Y5ok(N!%b^jdHxY>eFP zXhp-`5NQ-8yXTODL2b$rj7LKo zZ*?}T>#@99eq?6X;{>_$FeQkO#&N|v0?W~#_j598nGa{Ry0-He@w$(AgO396rC;tb zj$^RbHhAa-7_sD?$5hBGr8di`AMg@wBJ zWwy2(_9sl3K3GsqM=Ipu|7VG&Cw=BkVNz&_6ANw{zh8S_=^p3gYl>{;mwOimH zbhGBrrxv=BkIwK;PggFq87%+B-aiD161H2LaM`wP+qP}Hc2(`NZQHhO+qP}nuIhdM zzfVVZoOkf`pa&h%lN@AD^UC#P-0NP8e}%;MkDbBR)mWO&xEI^2afcTJ;e~Z|;dc_a z)77@x<=1F%9~V&e21F7vy4u@n$M>QUfYj+ih#aWs&`T*;;_`L*{Fu+@hS%jJ?>Z=+ zS5u)QxCkZ*@oKOJ%XO(u)~ug3YfAr5CR(_Pupey44q{@@DC;56L)+wdMH_UIL4hv9z`yjQRy}|3JEUDVX94EIt$tkP514x+Zae zA3l|L`b$P5xo9F873|ZChKrsP-^coAienYK=6nBxUNN%g;9jYZ*3OK}*QyZ3SJNQC zO5@SqTC&f^(D7^1+YR!3G#dY(kcno9;Zl9Q8WK)9ohI4Ao7y~95|lsXsy){WUcT=0 zdQ<72pqq_pp6A(x?Y=8_Ca$KEfK+(t)i0St+T42WXnz5fkgK${UM2_5PyX#%1{qFk zfW{|Yg_imskg-XoiE% z9rC$=9Ay!XZx1pYbpGy)#mKL{xwBagBCPRTT8Uspdk))JsQHZ-Pu7 zQ7Y?`nK^)8v)TW3&7jGuCNEoI5f~z35o{`X1zzcr`Wsu+Tge38u*#bi#<&QkV*jKJ zYsNa7r2u}{YipqonYM`46b5w>r7mQO;XWq)HG0)};TtsOTOLz4L&0Q1CmMNseFlJNhAU0DMzsOWf6g zt&F#FmxDS+xm33(o2K__LOdCw@9M_{rL+xgfq3*SO7{=GfL`F{VwKz7HD8-k6NkADzfh2D?CBKu4`4?0x8_3~cGFqQYT`$~!V zr2A4sU}rYqi#;fu)M!6kXMzacA*e>X*OaPD`F3;5?32FVxsXK*ubv((Idhb;@!;aW`rG#@BIUXB6S7?Uoa?z{ z>}1@06y$kN@a%Z9F!Nf;z zY*M@FYSZO&;x?7}Pq=)*lEzP~k^0>LD1`=m18-Eua4wK(EOH#Ti(qj5-!$lipY*iY zFFt010_-C8ux9YtRE|nB3Amk~r2b&>+3PDp{E@|>M=7qcW<7}@5qlb;s=Y}dpAShF zW9=CxTziULzFsL<+G~x|AOUx_fjqlHYQX5&^cnQ9TOr|X`7(4hs4YFGR}TJ_u;Ati zR#scH(BCFr-nd+7)S8_o^4(i?1BP}OL(XIcy4wN?=j0L3zqHV0yVOum!+)Ddkq~=o zR5)F7Zf)H)isD*Zb?-ELN^+bES0CS>&Os0lKPH>kL#@{!Vd_!KnMVWu89G#K?Xl_H z&|pKQMd({S7|x}-sVZm}`MMtJKf`txSH5_|9~$_VZnct+%^|H-j{8~k?KDr9y4lm| zEh%>8U(01qOu5+pB~*$^DD!%Q8Wo6`9%Yup`_a#A$1~XWl0p_6Qw}50{<`lNI=m_X$ZAL%_oMLMNEc-FJ9G>y*U>WAFNd>74*Hi>n}{| z1oIAj>YYKuwQ%Lit>$;bv|h1t-iAkme>$~r7@H3B`@(WZGKvS`U$R0)G=k0oCls=3 zN95>@O90Y5d8nr%Cx+8FLp{XP4bOkGv~#sXdN1HjnKnUpc!M+9$T30^%d)>A(s?k8if?bV_{N6ri z0{Mg;cwUl4-^lOAEnQ~LI9dTE%luvp>aB0DNhF#Vvy6i0y1Q{qZuH^mQq43(swW&m z(ayLtmzh{%ZR#VrX-ytR*p92eJQEvhG`;t}ef7(KMmw-H#HDqnmkMVU#_0RN^j|N# zK(48l9NB5yc=;6d`0GWcYPc>f7f8?f4c|u|bUyf|N5hJR)`7`64aMb*toFJ7m6Zj8 zc7UR&(Ony`b_iy4eNPxkik6aNx2GBF;dL*`2E6LpN~=ix3Hv<6DcpYwt0Go?xs(;H zyrP4biz>}h*KiGPiFzkF&YFhC$=-#c+Ptx_a@}uk7D052d8=z?kI|>D@kLq@v{-HM zYkk8ycLy&~?DOm>$+UTjz;}E^@lC|f~OE8qgI%W zcMb-2DJY&^wM=$$8BB2#oiMDK$;^PL_k20lSg`T;auxRh6TeoxY+QhKWc2{=k7}8= zX`b(c+Z|H`#(rG)vJ}GWQbJ44XkE9IqCO>KX}~*O`)TCNetlliP%Y{t1``uUF{-ao ztC>(?O?}qU5^~a_eM+Wi%j~KLlQV%7+d9otmF3cqcQB!RPF8b7ifE}PW#8BO(?uZ%G z{cYApbvX)Jv3&gOFpiO}#<5{&lCB4qi2)=S1CdI|LCdCrQ*m=(TR`c(VE=p)|H%lFcH}PX z%luzy(@$saNGMZXv=kDms85*(r!AH-EMjDrp=9{9qzSa8l*OfdALRH)o>pr&jb4_c zfWk^x@%5uc_FyuSB5r##905lrU1$z2s)oEK{AFP`V{ycau3TZbBl(fESHjm5%4%Oj ztOFT(3GwlV0r+VQuaRq+_#Nds)4ue$fmp%fAL{ElqEXQp@yWgLevZ(1jUz4$H&|YdpRaI(HMC!i4!0 z_LgppAiQFb4gn|H2SzZTiv4CY3Nt4 zi2~e7$DZFqsrW5g0R|&XQ}v@`aHm+C^O+EQUDm}~<;om5u1CAKZ~4kvc@Yvay3?od z_D2YQqVllItQxZD{>BupP;^!h>p-`%sV}B|DA@*vC1rq zi-ivR$~tgS{v|P?A_Sg*tMLXT$Z5y4>_rh9YFYigqH?T`EXRT|s0oDp-|uZrvopwX5Htu^0B;Z7*FYyBIj64 z-9*=xd%|_jg-lPAz+ci)mcz#^VEttAO5J>x8`9q_?g1jS2)yxWn`6vAytYpk)u$}n3uiIxLZs&Nr_SWQ4KMBx3zrio6qI@(|)j(X7;If&Yt@a;Y~R3>kaib#-*u5 z;jXxg;_f4@V&iGV(6>|uOvl<%t&t!o&WuCPN*+~WS2*Bg;9T6Gh+uN^Hw4baDenDSplZpaKwkO3 zXgQ`z_H;-0U_EoP=YJP;zsN-XDlpGU9ld(oB7`!^`C^#9f<~+o{o+*zw>Qx^*)TN#Xkp zwU6E!GI%t$JT%0lOO;Jy)2m~q(K!tAHZ6eEws8FG)@a||()=cUJ**MV`f<#dTqF~Q zun51rLnTPgAOqM8#R_(#{mUGb94o`zCw1zhDYSGGTWtk(4E#5THZOb*C%lP`G%D(m z&$cb(uxxxZLfnyMgj%Q(m&rK5Ub>b!E&StIwo{7O*|vA8g!gCx_HAeQbj^PMB2CkF z=EeB?`{98_bK(^ET$ph|#<8Mnr80B16rAUQXwLrGIXQ^tM`#`27U_WvqUw6ztC~xv zb2hp|3!o9HoS%Htv^W~$MUEttJ|i@2!JdRX>PP4Wu_8{r$oo9mjOuX+0D8!26k?SB5xj*9=g!ynv z^9Wv0SR?~@c<>d8sJgAX8$c&(V6{qC1$1bWh~2ToD-r!u1VZshi|z_E7SbOIvkvV} zKqS0Omuadf|Jw&?d4-hvi8Btb6#+_jNhl)MAjYuI94dNa74CvAUyC z3Kq?LS8`BgtDLvl4?Tx<6EEEiv@m;y{f%9@O7pFhqAuu;kMq*T??xP+M?CSjhZ+Xq zl6rBCn*>p68{c_Cs<_dnwJ4g>FR@YH4tLM>B_p#F$ zTRFz~TJ*~vQ=Pv{gs{AVyr?R1o>NqdU~ysHKwE)3kezfhZ~uR!3eGAF>9W2 z_prD!HXiAjrj?Hbh&(wm_H4!Z+mST_8zLtVLYnUA+c@%#(>+JI_XgA4GhIn8z@4_U zy5haXJ>Vlj1D`yRnYjUL7Zp(Sx5_RCa(8*tcNy$Hno8BBR1wIjCW&)g6**17)>=bx zkiBK=gG8<9+@~oK#Zmm@vOnebc}~dzwYF~pf>RBHLlkpO<3z-imEOWb+FZKl!zeUrsn2PiL=bSz;1ZtzO1Vy7ZvxwAE|SzwTnPRnsU?+#=@t6Wt$IQNjnLS zmU%&eTz5G?J6aAZOeD35O#O)AsIk3D2MPyzx5F|it42b4N?u|%;HHCIoO{~asr}Nz zr`?euiV4-H)alx8rF!Bl42Q}-0QH5t73~eX8adKtpM@v`-0bO1i2%#f+xC9>O9|vG zrrluZd)TTC6De)*JaLRuywt9RwH^j8iBRC`BzhQMz;e_tj9OSG)yTNpIrbO@xivVk z9|?DY2TjVxlLPISE20VD+R~cI9AiwiT!2mr8(k6Z*`8~h`;mvYh2CgmhDV{(^FFou z=lJ*>zY?TCYknz>GRt}LK+DBbC>|^CNG(e0-?6B0$zbB*TCGCB*7|w}SJFld)NGp2 z{x9Rf)x~NpdKx+d=P_B(A^xTl@QrnRGN-YR0HvOp&gL%c!M+zC^qDz7Hv+}tiz~}%(d#^8) zUbHUzu^L|B{1(xE<$>yz*ivd;Yf-ZkV!^h0TahSMJqbp**(i_9$f!4XHE%PU+llwP zN+GJX?O<;n4$=+?_<$|2Fa&6C+Fze6_wzQ-hm9niKbeKJ^ENF5Uw*%rd|VUzhf7zr zf$o30pOrgFDvZ|7lcufdTWuHK?K(l0r!hJsG{8H`BQd0#o+}D11T(wbSghi)yVVw6j1M;5B+Z>w^c&TqP>NS_%;wlxdTV#j5d&1;mE8W zhEq}mP3FwvkIEoNRG2ded{9Qd)X+sfO%a}Pu$awM(~(^~5xv*DT=(%XUTd=LAP!o( zNNHDQ>s^dN9ByGSp1#&%%V#r1m83@oOso#zoBn2n1{39bns z_wxc@4bhV@8#39ntLvf~1)Fh1I!ONx%alEM9=a3)SY-v8b>0YJ`-U!WO6~*B9x@P? z`u+X)E8B(hpR6Hl|H&G{!p8dF`|QbPGce3xXLz zdPPBcq8{QNuz7@#2vR_jXWfA+@o)twfaefl61N1n@kB~VHh@L0zh$S~r~JF!R@E>p$SMFw^k<)z|3XmZUft7`E8iI&~aWo2|vujFN5J2IO{sIO63Vx75RzQEy zVfL5;3mG9$lwN!hRp#s<&_c_F>Ns-npdgoC>;NOe07XemMT<-X3Gyf)NFMQtplG30 zg58J=1b7Ma*q|Us0oqg)Z20~J1rnpRPW$rtcPa4Yg+)ar_1U`SB~ar;`w7Jf@ItI0 z-b8F7LfHdi73M*3teol-x*g-zYp`n?8q(9#6NXWXK?J)f>>&eq5Z1*A5OaXVyaWyU z^+JK|1hx(Qs*r)~0cCIyG5FdUC-JU82ZR9I`#}Rii5uDB;YncNzz$i%v8*hBUUc@y z`;K+^LICyk&VW%6kvzDz_5QPl2od;l3+E{$Rbqpj2MTZjTqDxi<@I#bAgo|h0|XHm z_J$##!$6(F-v<%s5V&v*+)fb+IFkw!fT-{39~+biUj{?{Pr{zVQwQMzFoYlN2JpcM zBgY97_3Q)w`f1(YrS=PhKnU?O@^`TV2SK`%cfx^b{cRj!#gD!N3lQYE4hInI&FSs^ zYxfY4A4kXcJLmhVuCci`HKFkQk{j{cLP=fNG?wnu+tk72>-9n=T(7YdBDHxH*5=w1Tf&hN93os z_-FI@x8&}hF+`u}Uz^Voua1sSrn~RvFFf-Q>i)qaIv}|gJdF*&lR_J#zz_Q}&X4(@ z=RJm?&`V$K<~oF}eOY11`gdHwtoA=$6N2^I0cle)vRzS2_V8hEJNS`1LKk?tG4`z zTLJ@nJH5#;C}=_jbsXpfH6s9dyil-j%W8~_c?>hq$Iqpj9GkWpLRb`60S<4=s9CGK zbx}jR3{c38wN*ASs?7>A8hB%QVrDuE*eY5t)JK zV9fMHqorTzZ>=%nUDezULTC#txkmR(9x2JLAdg^jFI+f#tp*fgp^D{CX{Hm`;vqCg z@O?oBIin}ar-(|~MwiJ}!RXa#&eZ9(0_q0ygrM43$ZUF)tTR&c12q_qjm?4FmhvF-2A(_i<^mbEt$28s-&8TlG6f*mD4HQXHreTO zXhEQB*H2wptGy>ULZk~{yj<`ZUR=G^-Q(KwT@?_2l4b7j5mu>X{_JQYwXz%g6wQ?i z$qA*5QoI_L&3Bd$j+cp!1EN(^j3KH}X|pNZGZJ!#tgDw_jxBbc_@#Aaa525q#Di{; zG*IOxWR{=v{@c;uLrO`UZd`3AL|tE``t?n1M!DEfo}tuNypgh&kGcM!PYu9PA!maXrA| zJ&C1?5a4GizF^a{Y?N-m4g zE_6!{cf2w5KD^iGqvE5v0*wat<_|r!a^Zq=l&o{G{XT=Gg!hm@xkw}Vm*7L+O&X<7 z=)rLR5`EIho7|rzxIFU{Y6xz|Sz9Si~{03F+31I-= zJ?Qg2=-IlnH<9i98Y7@HQYlW1JM+HXok{kM?xXNXmrXrz^6W8EMqpk6`eMH!0sIDhF+ z(UCubBXJeFB#pG7x0hgLIHAwUVIQY=sqdHv<{?FDPlMcKsZ|e-R<+N0C$t|VbPNp1)AQ6? zfSHHiksr8{=Wqg@GCC63m@+Ve_}qLevVS5?+4zP_n%4bbhosGgZb3?J_DM z-oB!dnyM0@a?Z+3-Q&>8do2yvxgZpaK1jNDIcEFrXMo}58(P*1 z>fW7%Mqb#klHH%NZHhdkM33A@trc_gf484h@7(jcl>uBwP(IDh?flvAygfi2hBVXN zo?-Sh5z=&~8Aq~~hjrU_JUv__4>|>zocs#URhLAxLG7^oBhWg(J%{>=BL8=CP0nk= zx#>Q-kS38grmn=I;vo@jPU-^TFj&|yJ7=0I6+aT#*-A3xSUKc1z8Il?7G! z6U|jMw>u4O&*yw>g&X^Yh|I<;>b~<+UfTc`(XU+ZG)l(eol`L{X?^d=L_Wiz;uTTy zYzQDfr=skL<8fVzuuz_r>aqE+%@BmP3Jz)K1(QO|MzXOhePtqeE#;yPsDSNt;Jz8A zBOX*86|B<2ns!XFt<#4aQp1C_DJ9eP8ADKWg~Ms{C7kQQWNJ5?eqlu1iD5qbXC5f^ zENNS&twe+VSC&tcdl{FmyBio4R|aNn{nvd`M5C*jK@F3uda_)<)yf%95&aq!)B{pfI67D}{z<#yKvVX#h!|e~h+uTJ4 z1Lfhz^NELm&!wQV^RqzohFxuKR7dA18G)fV1mh%w#aU@2`m zCDh+MIpq3$IORN?ukBCdb8k^|2Drl}wBwf2ut+;wrDrG2mPINT@w#e$DNijLO zAl$RG4bxsIjeXgzM$4&0#)zI0$)}soNE273GF}J*bBR(rTj!G5!+5o*c9dQ|<+vJ8 zg6FQqpy{QX&2iprOm==ZQ0l_%d<}t7XE%4^HUtTHTcXQsnC+oO`Q6D^7Yz8nb(MgAw07Ku{$koiiKvN$@%*B|+9}ShC72 z`c8OKyWA!4%ziSgv=8Erm{2$aJ%0gGxQq148!cYFakF~8Y$IXJt`C$wWwTwc`MNOV5^Yee~7ei%7pes(Pj=66*x|l zR&ftJs3HcV@f~aaZJMm4=lfzTSl#KyT7`Ruhz(-(O;*9w-jl6q;^O))qJF&TAtDVd z?i^?&0K2sjLfhY3ivDu?j$PnXEp824M{VHCy#Y^6#oC1KS%N>w?-{Qaw@tTp`av`E z(bM$o8%g@Kmbq7Oi;SSf;;&ofjVl}~5U*PnK9n^60&%%NXFCAT7XS~yhBs9te>`Lp z0W_v{_=5o%H7V`kYWwqvet#2&=td>c`18of*6Dk${nud=IKx>M!0;enXZb8JmlO3k z-f~W)rO_$kVOTr?EJ@!SKGfowgX*yelNnfintRUK`g&;;4$ldX%CfFzeu5TxhY_?n zN||sxxi&@}`3!C7WYSp?#~?>6;~1{+07d?XVcjb?5TEAt z=NQqJNxrJkN4)gQe=jJTV z3tAyuw&f}g%)QFp#de&UqvA>=Y0q*C#n(JoxV`)0%Iwo2>fuA{Sk&J~S$khM^uVxg zC??$K#E+y_pY!>v%ss~Dz$+AOaWDVdQ?0uI4jU>q5?=GM;hgk<=vBE(RqdAu)0-ME z)!na9X1Zc!^ejXM3UhY&E>}hhjv}0bedBVcQQnVWP|2F47|Ew?d9Rj6)1MFVF6x7V zsznKCbIewJOZwY0;*_9EZxS2n+Ea;(v`sN-kCYnRYId4_@t?2*wEP#8L|ZIgk#E2IJ*n6UOV_X2Jf_+x~MCDa4$=aO%4qe z=6AYY-ZOU>@pnoGGkjf~KDfSE9p*T4_r|#QbBfVJo42n%yj;NR{OLWhc-@!F3ACfq zGgXh2Q%GcR^)$3nPYUkUR!HF(o9Jiljquu8)P%WS!mTs%sB)whaEK zCMXkDoI&=QMt8Rq!-X%Yaz^ngi~8io6tr$!dK;@M&_h%X1+I#c*neIks`5ipel$~G zU+f_z`9#O=XA&L4M!S!+p+DZDIa^i*@8$fR=J+}D!Q-!reaEv-maCH`l}{Jyi@9uY z>}nQF+48uit0T(g6+Tth?VntQZ8z!Ust+ck*qM&o_!$1S*_a*%CGyH<|f|X_@(=9v~vLH+Q<3Y;)0CC0&k02JR_}$A>5B zpM(1;nmH?W*vaXm_8_x91?tuF{Gz%a?}$Q@0xVI!ar+=V16PDDS*n?eo_-LJ`LNwp zfKK#m5EIcR2=>%2Wh-sqnmS^u@Hc zu4GqhY&5-O3=_CHt%63!H3$2>6$>XH`@zFXI63zgFeU02_tVgac6rgJHJa8_e!rd! z--h#9M|8H>rk<*=o}xtrGh~Vh&IZS7E}Cj{9g;DC$DJV(ZxJyE#h=*oS>%QKzalU* z4UfH~0iAPNd^Fi10YQ1Qt=r|X@B~J>SI1HJ>?Xr%Ipa-yaCJV+EX60|C9!S5fhf3& zOrG+DE~9ZH0Eh;dv^IHP)uh-P)zM3)SO6+|tRTI=M=Xs4)#t8BwDqGDlR=8&ku*1W zKfTl!!klA@jgU>7Ks+zsb!R#`A7%B1bcHO%&+BJ!_+Kd7UPyG3pAA@u8_P?>nT`__ za-14vIs0=_6TQpH10cBEH)ou=p}ePiF6K-}iUL;mdK3?vkt%2B^)XT7XNv0rPA@uL zJ7?2}?zNOl9Zhk4;&8|*hZJnK%X_9iPCAliwHR2^x>OMv5lARB$%X;6%Qz2h=KPPG z0zIGFN!W;R#fdgcLZW(hS5i=kG8;LiqK-q$lj%f5Usg#Y6`@YcIB-4~$#$Ga@KX6R zrZk*`{Ew zQ>x;5R*T?1K+89Hx1VaU@alo92>DF$#d==X|D~_N=4?d4iJ`&KmfI)XZA8!Jpu|qXo_DH>bl?UHepx^OFEeST&v# ztA(GZPoT^Ex>-F0&xawueaoIAoC<6>w4fNe6ikmF9a0m`+sG8z+oOLn%DaF~wbfiH zr2xv6Xy0B&BG%%_1hTxV;>UZ@?f6oYNZw2eM%f?WXBr<~=R%Z)LED_n{pEX-Nj!hI<@_mJ>Bdcx*HQQFSI;IF%!L%W?Ict^YciqOe%*irE9NQ z!d)(#1^PDv2vF>b@F>~G`mxCeXr>#nL$^TId2=Jw%;Tg$#6-PGJqhXhThk=6siQo} zBJ|C62EoF~Fzf+Ch5Q5*LZccu*hSc+L^W5{zq1^3A+MHWGdnWFQ z$jf#QTBsPrq~_>+_vg%1cwRuB*K@nD;!9I9+m25_j}c_IqRaQEGvVQ^<-=|p0c=vM zt%e0jKxp;1m{qhy;l<7Wiu`YW(*+7UOE$V$=i+9BUcnq)ez>|B*NDtc5*l#{>+|Xe zK!+@UcZazJI`EFbpC0pW(eB-qaktAgIbRyP4UTfFhh&w9itDhkXEzc35?pY$ zelgLhq%Q4mn(d_X?enW@_(dUu8|9bVF&WPVw9rlI}1 z9A@#^?UQ>DWux-oaJeg(h*W_`EL(dBVObl*N*eX4ZX;aWHb;VO`(mwMAE%CD*EMc= zk8qS3qlIr6zfh&7yZ4d-1xa~Qkm$U?wF^3p77;20bi}1jZ*zobrHrN}J|0 zWu&z*0TQj+IWD|0_`P~g${8Vbgc906q57xi(|Yw?+R|j`S4g`9`6$fXQu<}rwrQ)b z`okD+N95?PYtzaxs9nk~d&K5)E0~B-$;(>!t&CBXNr#Zy!!mW~b}H&zw{EH9y&h`( z?A5-%gPuR`v+8vnw^p{TA)ip}!hEmR!wh$h5q?DwH=t#_9Eu~#M@d;s{9dnIU(2V> z_$z=9v;o5hw3VixJF7-R8;$-1Qgq3_aer$cg0`&@W7G^ z$LX4CjE$+gBo`*8iAk|4XyCAaFpm`Fcbuj&XUo6li{e$FG=XRn zy_LvltAT4@@0MO&gqePfDSO#nuCcR>@@=j6ET(OB$PW7ptmCXCcTulCg7b%4ajZoy zr;S3|1-{Am+(fjVcxu5Hw9~0tx%vJ8Xydz?`c^m*FNzsN$+KCX-xZQs-VNWGRx}`>Kgj>MBB$7Sgz7lL@#-SN z%s&2r!WZV$aYhvK1||4vV23#pyD45kuhV9scDLjGurUp;>TvIS+^6#!#oHB`*4=CzHLKZAJ%hMrCjxl|+;0?%r3d6g#4VCcMVN>A7ObJn@afc>_Y zT;@QVK5=;Rwc;M%DPKe5It|_AD1Q0K}C zd2n#;;=NY4umw{tpL%1CsVuzJK#^~>7sZ1)zy``#8ds{Eid@k#ajQJ{Jzj;pW(2Ev zYt?Wd<+;z|#>-Sql_S?l$JBnC+Gc*uH309Yq2Kd>FFDm*kg{l(m!j{K`A~701#M&xKuB467y}^5=ajZ=@@g<$G z;;5rz>hpLED-7|z5u|%vjR#B#GacO7W@l!Oqc?03hl_h={uhwSlBMH6O-DKY$8?l{ zjg#&FKlS`y2nn}Vk+nTwKC8Q^+S-czJhq<6>zdlrlz8=egR;GStm|&^mzzghd)<@;C%8{j8%5YI}E8nK_ry}$^pAIQO z)tOUg_e_)RhA*z`n+LvSy(yGVi*EgC8aF5OCy|9uWHGg;!F$`M?z47bYyQQ73zyb} z0k2xEssUVme)_k|iYD`i<1qU1$Gt&jq4Ta|qNd?=v8L&}=DTh_;Sp6EZJ4UT`uSSM zA-91)YHP{<9S6SnFc}!;fE7@TLm)3Bj5iKIAmWaa47?5?4|0qHUmFKq55+pdx=x&A-1Lh(XvxM)wV7z^KmHDP9r?7ZRh~oW$Ud(|jaD)`*T+ z(0&vU1N!;I`fKvR)*XrhMN!$pG?%l#`smPN{OZS^wEu7odOPr~SNEh+hj# zZ^f#2(z5~jTyQ?;ByYuwd#Nk^^x5FOQ7}H~qIcBD?7e4`1@w@=f3Na47bxhxZ(ks3 zskM+b5S*=SKd+Xu<3#zjf(}oHH>DB3!R@aDhyD`?oc{>~*8jJGFiZX^?TvHcGSKf` z8(Mhy0&Nem*Nh;e2Sz8x}NH~>WkM#a?5TrKAV<9kI`g-hG402%-bASSpU7SXF8kV2aV6nqg} zoJ1g#m(`cem&@?Y#VcQbif(nny*t?SeR!MuM)st$?>Jg{$sqMCsjByYtVJHne}2 zGGg!D0K45)*{g%4(IG)uOzeh~t{CRKWOiYpUM9YfO{&Kpr7X`bfvy*h`|_Bg59XU& zC~xD7ViL1hXnbJ#Fk+CqBo9bXSjy)FsEvg!M>}=O<$cb(_hq@g3{T!RbJ_rXEwJ7u zD4%o9JL%DXuRlny6V}%P*IV)9UTSA?xQx8@V+er`0a(+Ga=^~a`M=JA>VF9WO4ol2f{O%@ zYLLmP@IjrmYQ?f1A>+10Tpj}4_v__7vD^9!02Y62uK88}*0-CkyvnxqG>O;I)pS;e zqkg*Ni=!jV&CNp%7rqQP54LiqM;0&dKS8KmG5aS7RQk=+cLw8?EgQL3%nd!{7LW5y zIRV~l-<|Kg<#645iP!Dx@Uq%l@u5Ir}0Gw#1=9j9-*s(GkDu;$9gV+qzzVVI}2tsoM&e9zr+3RC8Ts>`Q)P~Mhl2}cY8DiwaF!$-|<9I!UIXuAs8Kbnd+Jih5 z4B~(WgnuDHHjvagL!JR%Wi~h!G>bXp8N<;6)%}+@9vO52X=AV1xZpTx2!nk34XPt0WI9C&4RhC&Wbz%R5gB#E}@r zfykjK=#x)KHID8vlJzzhcccQ&Pv{fF2YK$~TF!Ak36tT%u{=g=mv3nvJS?j*=V3p%^_E==jC(rfZzED4# zDCd>)v~?;;@0HW^@5aWdxF0 z@P4jv+}#A9=WV&kA4FblI{CoE?<7`hkM$fI?S+lfo7khje=Jk@Ps}j>KgG;ug-T_& zkWoiGfgmBy$L;E&xZVGS8O{HLndSe<%okG$+cSr!hY`KEdi8YQO`~d$W#)c=g1U7x z|EigZxBS9Mw*@cgXWb|Jqq!39$GeHA&5Q7&97mb$bX{wbtywy4{VeGT+85h*`S}Jp z86M|pi$at03a-H(iVQu`np0A<)ka4zg`xHtRFH|YGHh!6XARs7NuArbJ=T=r@=XVU z?E2HPTu#W(;JGJ6$*i~aM~S!jYi{s*`2UZYu>WQz_xan(k>T%0bSL%U_2Hj1Cu6~k ziW;`k!xEmc?O*oPxrl3Ey9CKx45EgEB#w&51PaRp^V z8)!oddlAscKo&GK@(ENLxCM|z$q+G}yig(d=C&In=V+*e_p-8&&U5+=_qIN!m=UE1 z3=Jh*C^rcW;8_UtKE&%jf8&9gSyS^?G_K;f8uIioV=so8FE@Ytn^DY>Ver(xn z;2 zDSy=VW_#>vRcxY=7w$+_0N=q6+n9pbEkItA@VKDTbqS?eY#Z{7R- zw_8MK=)I{vO{&okH7%a}BDejQ&Xli=cUH)~>ejC$EiG>jd}u2KmJnKH^4XzuMcT=4 z&$cMzuic3D%;F~@l9{eVq+~z$inlz=lQTuvT1jmbSwZ*7*j($zM^F*@j z$GnGPbwu$3rCNyJ1`q|H3dkCgALt%{TQA@qAjnPuU|x=;dn9-rSRG*>;M@{GakS)bY zqHUj&)($i#iFAP-OG1oR3$4+CPBml6R-M!lc!$-vp5K6$ zeH53LV^ntrXOc-?Mzzp8bPVOLqs%+)Ehu~UiJO1gtdxIde$RqItzpi1H>FweI7vuz z0w8008gmHzi7N+n!Paz2VAhXnj`J>0wzkCh}jIp}w|E;>Oj;f;x_C$k2aEFTq zcX#&y!Cfv~+}$05yIXK4xDz}O?BcFLgS!Xr@;%!<=e^zc{@rutR9AcTocT@nOm$b` z{+`ec4jj!U*we_ZGYyZvs2gU&HSQwHW&V}{t8&8kfp^@W^mt8?biR2#L&>hgQSmDK znsLmsR$*d?r3VH+S=;T&a8f`uz$D>!EXh?vx{F@C zGmFC{yWt4h$hJDd%^}_wWmv;ryGx7GIdEeW%0@(yXUIbo5f1N@K8X=+J zHw@Yr(bN?Pg*oIa?MpAacY0a(q+DCB1NU3UE`8?@;tlWY*%XNj+#fhzR1xf(`OSlG zL58=oj=$eMR4yfaz7qYeb4>PMf%@IB9>5W3gDfQU@4Ku2{{{7f&%Gbnrt%qMVo(y>6#}i*xTv!L`pZ?ds&Ppwl1_qu)0Sz38GG;L#~a3`4Aawc6v8W1oAB8p z^3J*an1C)rEZ7|Kt%UM+UjpO%pDy$Vy|X)4TtBb}r+)q&nIEwxF#h>UJ~2DC`{d*m zV?trxpcf_5Qxal*f3aqWbCd9)yHw~0dC~N3ZKh`1#qL%8*-kU5u~|c^3r%{?WL2aY zWGUODd;e)aTff|3rG&f|f1yf;ArA;btY8kp5|a*MhSq^X4|*VmA`{zYCW1PyOmFjo zvV|gsA%Xggrm9;V4lRbp1d9%}Kn1Llju1y1Q~VJJhk=6J3M}{lC434Kqz~(~y+?u)#)2M$Zr?J`0ZkV4pevCuDtuF*3qu5# z!;Myfe_UfN7PtKlXYK)kcVyQk>CSy{<$f-+7C1erTs-y}+X!4c0wUJp9?MCGz+Wb3 z@1z4oT%?`lA0vPwPal{{_kSdcH&P?ZQXN%*)+lMg3q)pPXw_2rCg?OSIOI{%q(2!l zKU{^l7IdYb!qe5@j#LzLk1SVbNy>kyT46}--Ojug9!cH0HgcM?jmM9Cs=;X|JZ40@ zCpySl&jD&>D*<&F2|uPpRg2-(@|6jcq_L+?aVj`*3Kf_5@zjl+MqDI>1*5JRVS;mU zA2VvA#Fc+O5ouLCzS&HuUA0vAuUvccUpB{^IW?^>754m?7ymr&KRT5D(uz|@-&^Fj zST)3SzQgF`RFcNaR@Y?(58+!>2n}U?QtnfX_m|GtTBw2DN4O^d|H34oP~!%9}$KceVBv(pYDrfPz;IBqQ+(7`8Ud z_N39~zchFDmJVNn2vIF8GxXGyHFqfSQB0hy-FS)o`)gVY)$>{#u)nfy(43PYttMUmLoSC7E5BHD)AUdo*WFg^YmA^p7h z^rW4U{4IyD=vAsNQCV(f!u`(Q&3KWZW{Qnfy-sKNt=uj{P?HO;NWaLHaYj4A;O*j6 zrMS@+wJqs(BLm3A5opbFDVO^g(4qLXz=S|3YMg;L+$ zBE$tt3C<$g;!S=9bILZtQIyJ&%hr5+VJK6sr~MdK9PBEFxE(u%7?CI%j_kwih#u!sI8e zH>%k*f!gCE%fx4dMv9H!BX$9ZOU9c|_oXBvup_!=4w~CgPnZhTCs*1~>f973fS;#2 z@k=U?d(NLPdLSq!p4CC_odw!R6P|bH*Vp?ijsdQLX60H)xx%)8Z=Y?J{BOT3iT>Oi z*N501X!6Ei;=sWQD3awuDWTePCFx!3puc_Pi82suc3uygFzbA)UOS07%rSf@I_Z5r zwO$Hrda_>9lfMo_k4tN!Um$v<1nTPfCpRo1i4O8epQcX_=(-g#cQKX%t* za6wyh`720fMpbLn-X3D*zf$9MibUxU_}3Zs7^@RMv(%WX^3gQ-tGVL6y3;`h->y8@ zj@_>*XFLIwS_;;StspMP`=o<2ENiu-^uNdogS$yuUVka%Tv1A_g^OzT4iGsvu>Xkn zWd;fjNbx>$EGj=Lp!k*2^vs5_eyQ#zy?}5!JlNcr9RhoY^F1mTy_V_I&CC zWZA&jz_goGiL(Y2ILR2=Vz2IF9DMew!sVrlqv3`wO*5mJ#NN`7(K-kt!n!udqRroW(&zGnryzR zbdtCNy#c_?Jl13pChF&1Mg?YP9Bsu23w7pxy6D1mKFRQKEyJ4nM6AjI39J%Kyd5%& zb)B){ygC{p4-AphyVL(Spr6E3}b_A^{J%rYu&EO zYR939h2f#Q5mt7_ZN4(COrlo>GV;h-A}!{8Dp$;F38Iv;VhoIG&<2gvk?^3M%3LNRg{xD^%f- z;7a|oS#8R}u0)r(f7MBg?JL)B4r8cL{?ek9X;Wd|O(|dOBTyxJJN=9?Et|Ei+VI_b zfSoDtVUl1VeYT>G);IGjw&9;DvODew%G-+XNO^O`tuh$dvHoI#R2)aWGCA@PZXds$ zqd78egei-F+1R5Sl3QbusFXL`TSRm&O*0uM;Jr%%yg=t<2`#bNC+-!3taMkzbhJsI@F3Kh^vWkS9LZjriZg-!g&^X7@8Yq-y_P%+!pn<683i0s+^nb z^z*~5$Sq08DAN{FyvOg1;+S)El^y4S3DLqD-CD(_%=>_dxhwZ$^^|P*U*epS$z!AM ztWfw^p;VL=H=%c5I@Hxv74}&$PCNz*`1uV4!MqDxapjFmiCvOD^_8Z4^li6f$m;S` z8ogX4x;lagwG}0$(neMN{JdpoiJ;a*$~(bd-rLwdfE(q*`4@(%@$Xbe>Skpi#`!Fd`VR4OLCcR3K}uhp2;S85(W@bT;kD{2@e zXk&0@W5I4iJ(F|{))u81^|4UoW~K9NNC*duQEV$x(u?&G{UUXh6IeDAAJP`t)@7x_ zYN+*(8#ghLG?KkVzWm0mSgB}>cy{1&4}%F+u_!#B>W#iqpI!8MOl&5-$<*DyR*;}{ zryQhJ?Sfr{V|b-VB=uukkwYx;0>IPMt%$Qr38V6J}rc&aT!iR%;HY1A#RO_9?NTLdsWHXQTOmv2|kGl!+$+9 zVNkG$D6Qe1MA{)r@*5lJKD>2K2eMwChZU2cWlOQ@Q!Qsct*MR4>`++5BD2ZU=b`NY zcV&@daH1FN_?2~2*d)pu&vMpqk!5x^WLxPnKWAYLMULl8AC?Eu-YW>0N;jH#M7+e; zV7%3P4>1kU%;{26?7xOf$mW20#rD!YrYZh(jnKl^c=IYwDAn2Fjfpr)PWq_O9>~B> zN|b>d2%EqeZ?**PXP74Oqeh#mU zLI;3&g*SA0|NLr|AF2Y64D)u)W>~&;@ztb&*?7Wqk_f$P= zBE|Joo*sp3eW_>3PQZNa+m|@3f*bIv^|YVHW?zA&#`^h#7p}kh5~s+U@nvC2$#wo> z$+n@25Rr#stnxRzS{+V<;q{ImgX}*Y#>m>L9Ik1E2ITjgrsVOnZL_oTead{1hzOzx zBoK)G8WO(JkwPl;XreqE@~MVKEZRP+jQ@|WywI0&qFaUUif_>86tv0qezer-$O*R} z*yUGHEeFWDNv!R5cQ98s`A5kBkc+#=Y56$~7X>4{wBaMEbn)3RU!jD?nSt_;M1~l- z9T6l)+}E>SaW;U2xkaandX>9RrsqVHC9ajjGVqs6%N0X@6z!dPc6SGRU2?lZ-6a}% z{M{A0{`}p)G!6ODU#fguatEKdLw3FBJ;H)KovVqzlGPIBxi?Ez%PLyl1kjn3a)T8{ zw9%SouQZEm-24^*jHJfg!$e+(rX+E*-7-3`U%$VxPyL#~;pgG*R+!R_`~G3mc`lCF zzMD5$*m5^5>6BlQdo_1*sX>gU;r(qsrw90K`-jlq<}&Ad8xGNuestUkbLsHiux(|^ z$t1%@`(_PC+{vWY63#uX!YtoTP4>Dspx~W!zmgDr%F}Fcp4ClzXBMiQXIGB*OH#l# zb9_fNt#R*+b*`IM*RZ^0i{m@<^_{uf1Mk9j%(tJ`WbN$k9gXJ6mgO6GXhhqcfL#|r zBepx>7O?Q4{$V~!t*c{qvsT!smuamWW}V()e%-m`xuLOXA;h!2$=%1zXqM{xMcOuL z6iUzQO0nnSh3rL*vDC$>8^&+xdPet77r1?fuoOLDplXM?P#XHTG*&CjOgrg*bZf%< zVrSA#LGKP19jLF?L`@Nv5hJCm2aMXf%v1cQ8Mu*#WUXk{(uXci|{=9`@V7Ql< z?uZ4f*`K>QtY>8SA>)PIf6`LYarMzq?jL+x7&phOR#QpP)7-6Ru`4its4zZH{YZ1C zs{z>-ghfkgsyZ3yT04MNh&Z8v_Gnp9<*mc*k9taR&eBFy4h|sQt2uT{n&y$*q5I5~ zc`{e!mXX}KGxkFz-wFOTGLZ6W@kGZxookQqn1NLS2madNcV(SdRb{7@{{)F7SIP`ZSMn^jhCu`)wToxOH#yhdmoXko*etp5OA8CRL zs|T|_oR(LK=p&=*oI9V3{}zrdcA=|CBk6r)QQeeO=Rx z&@#xt`rR*~rT4Zsq+Fe4frV9i$RDNKbuvwVlqWK0k4@=>n>yv24Pf=*^l(J(;)i0( z{oWdebvsg(CROj9FSXzni5Ta8+R4C05m@eEsn zg5>nklzh4*TqXM=4kChT@kpgT61B_`mZDF$^(jat7}EzQ$}-Q_)oztN9q4_^1>10b z%;o7LuN{Dyp<-r{H6SLKoqqb_PdHUZ!h465^ByX00oclif|3a-g#l&S#M+>WSX%wG zLXK?v6jWSpL#hQ-29~;P>#J(@g|j{@g8*j=JbB%HElq`%sA?|5nd=A#!#Zs!>JhTQ z$^qu$1Gp6}F6AC*r@uuIc77@BvLyQFJ>NHk(y5;N<)g)50fTSZ=E!$l$8%8KJT0Ai zHtsDrtF`&St`1^P>0@&jZL48r_hP{)o3^HkMW(i+!ia`6Sv!-Xe4Wf7!i$8>zC!;) z#PM97`c2+gX;xITnG{phziIl>UmrBsje670B38GwZS_ zZ<T7A1lf!{nlN$Tjo1YCT0LyTdY&Q=sS;Cq}l+4Qp- zSrR9GsM^2d3VAYWf6IZ$kdRP1BY!nwBgoDNcCr}8zPmJ2f1V%strOZ-%iy)0AAtV* zI`UOFFaCGZmz5400joI4_93ok>fMW&zT<%(bbr$bIi(*<1O|ixMW~d>q$@MpV2uyu zQ-BN$D5J&}l}2)JP_bOCRdQz4(arCHZFThH@DI8;s${C+_i)z8GGiE%(Cez&nJ3zI z3j>!oW!{0d((omqf-7FmNFS*d$B`r{SGeWabvJTPf9EXCy`e11IjZIJp2G2hPbV3u zGlNSMMPzN=aNWVtW2sHLA|qw{>7n;^?qTZfaE`Utugn|e#O0Mpq80Z=#V%ghITUFt zf4A`RY6CvdfACZDUpN1ouF3nm9MZs4Btd)ieBl|tN4vJ3bt6B&yJweBA`PJ}`^^9p z?%NuO!ylSkezm@v(??B+Gej5C4B2|~d~JG*c^iMjc-4Mgdj0n7_~PE%)9u}K9{7j# zIp(Czap|=T(h#^|>~MbmT>VzoyRz<3XMD%&*!nuT(F(B*T-&EumOOD%kJ8s70~A?|d=vUxA3?$G04CgSGL< z8yg*aeD8mfLt@kX{bNz;O%YgBk0iCqhTWgs+}@`W>73pkedGHj?VPs=(L0xpCueP! zw$mBN-Nv26&GFZ9wbdUT8+OkdTXipi4i0seUWmsOUS7{#O+#7X#i#k&;Pxhj!FC3W@t;~CPKf6y#U0bf(U z=1sJ#9!x43`gDHH2CUWXnhI3Qeex1ozywTg1sOWnVDC)Q>>{+RgVSC{x++{olqB2V z`rV(y+E>f_6NNF}`Dn$U2`Z>;$76r50sqSqdMuN9=)WXRiPz;b=Z|Yv7hWavTl^{P zJl9Y6xJ;SXp=LkFr*V13ug-TFS-TipZ^uVajjT4)ezCmz?{_^4Tf3)U6eVr)hVt_a zK2muMI<{=^et_SYuIx*RINI>@Q83|pUa(xkSINIvZ0oxD4%pG20?=wdcM~6wj2(9~ z>Ic?{#SD;{g^P#VGoE_mBY3^AwmP+%S&h?}j;%#-SxU>%!y-=udtU;{E zWTq+te((^uh}Q3guL5fmlYT%_OvQtOttt5z;vo{s(pi74V>ab_T2q;H8$mUrQ+H}#K9k?%hC08t#hjSX+cGVfms$ni&wc}>>fK3B0bLM+^|MAV=oGx{= z^fNs>pz4xD7^oeOjHzfj5XFmcZTWyrNawrb$T0Ag?fz%Z9olW4amt}=tdhH!#HDXq zmdWt>g5F{@3EaoIDI%7j8jOxV(DJ;?OK=R$(mU>t%s&ewyhzPgR3-C?*>h}vwV^1q zs>e^_Iqmy!gxEw3O8l@L0~lD16R@=al3z5|f+nwJlPNi)zAK%_RwY|$4J5H5+FeW8M-7(LU5p|^&H)vmr@ z3Zlt;O~;YeWA4j?=CJiAu|Q_8efW|~lhyjtl4_xMZ%dytQIzg7dRiwqPP>}`qikhS zdjTzk($Xvn?QHcRkKTSJV$?L<_yT3o-(siew(LZ5>LudnPhzJ?vg#kAx1);J_wj2Z zR0LmYy|JR(FQ7q@WIQKwVO9$`2!f&%&Y1O|btBwt|EF;&RToEdcQcR+fX>O>LIb43 z%+A8a#=^ltkIX9W?q=oaLPyW4VeMuIdJomzfi@sBw|7p`1!U^>o~LB`UIpN3?PdkA zdRMZzxPUC^SrtLvo{lc&u5|Bh{7XS=M+YfWHxPhMN`QlngOiPuorj%^lY@&>@4dul zNAv%CriP2DlM~1sz$#;E=L$k*Rn?HzVUcmSvjdvGFE8JP*08d61-xJXDm)WF3*_SZ z-W`CGg`JC?o1cS+o0FM?h3DT#^ znF2iitqmR)P8P0ziqIpAi2QRO|4|Zi@&CUxOYauB{#CEU&GjE@B~CWp|M3P9|Kxs$ z0XEc#3x8yCgjuhUSCGJV@WF&{-`LcUCF6Nw@yobIW-@kPQq*VEs0o z!g)COp=o7Dx*z_zfL#A-_s}F*nAov(lGe=8Lb5A}A%63_j83)}srwdkP;fwg7|Q=!5!$jGCb*d=GKcq3@%~V37Yr#@UR+}?1#a>ucWp8HwezLPsYQ|!8VwAJ{PVwv&r zM}IQo!8zvGpT98xcS3KWdw|ITeRF*&>D$@H=D%1RTo^qPj3;UA|mjQnwU@!G{fzofA9`AadKrVq5XB}F4+}o z%G~c{bS=R^7dfNJ9!!e83?EI%j)_fm;})WOn)x$c_cY{ZY*3g^@mNr`lZ>Ab@nFsXTSnyFmL8eO9Z+HcPkgU+Ynqrgt3=OfP$0odA@YJ$sPQh9;7UyO0hxtP%N# zMF*&p;p2c7KHVLbuzG4z#o2~`NO+8HAdIJ71u9QjC~wDXTl>xALO1ix7*zcB#04UEVxGWyL9mH74_0w+7s$8KakfWepy;CL%|c`g-5CdsPQSzp?$!2hLII{8+x~+x>WX3%4JIucp9Y z0zn5zYo8XDZt8C4RR1#E zWAyAo25L$@WAIe(?%`I;AT2(y2!2dVj|{376Uy2Zqghf{-q)cF_JPnQ>CU2*bK@9^{2nL;VK=!xB-S(ymMyg;+sNp-b~bA}5_L zx2lu)M)s$FcOvtHj{|(x`nz){e`MbTvkPZu$`v}qqdD?h!4EE8r?8l=qxw)0s8COl zJ*d(~qnCpPL5jqqO+=H$j3ns8g@6)7ZaQqgz8E=^EH^AA8Tavd-aan#c${LnJsRr5 z)PfxlZO=RhF%7k=m&8r`f|_3pNc{WvRMMG-q|S3nR?9z*NR+bYf9SsK4I`7%MBN48 z<(oH{S_>#(=BO1EYc#+=4y=56d|MgdPz@_xiBjoLZSp}9EHaaIJB^HgZ-q+0Luw@c z&oXA7hm?nUhU_vbX-=UeXDWi1Q5FKk(-$y=g`pPjm3$4<-p)O%`g{;Lv=vJFpC=<% bH&YikulH3EGCMCDI~N}^4UM#l4D$a1G1lmz literal 0 HcmV?d00001 diff --git a/1ano/2semestre/md/apontamentos/template/src/main.tex b/1ano/2semestre/md/apontamentos/template/src/main.tex index 7efc4f7..65a1cd1 100644 --- a/1ano/2semestre/md/apontamentos/template/src/main.tex +++ b/1ano/2semestre/md/apontamentos/template/src/main.tex @@ -23,7 +23,7 @@ \def\logotipo{ua.pdf} % -\def\tema{Lógica de 1ª Ordem} +\def\tema{} % \begin{titlepage} @@ -57,235 +57,7 @@ % Content - \chapter*{Consequências Semânticas} - \section*{Teorema} - Uma fórmula $\Psi$ é consequência lógica (ou semântica) das fórmulas $\psi_1, \psi_2, \ldots, \psi_n$ se e só se $(\psi_1 \wedge \psi_2 \wedge \ldots \wedge \psi_n) \rightarrow \Psi$ é uma tautologia (fórmula válida). - \subsection*{Notação} - $ \psi_1, \ldots, \psi_n \models \Psi $\\ - $\Psi$ é consequência lógica (ou semântica) de $\psi_1, \ldots, \psi_n$\\ - \par $\psi_1, \ldots, \psi_n \vdash \Psi$ existe uma prova de $\Psi$ a partir de $\psi_1, \ldots, \psi_n$\\ - A prova recorre a regras de dedução designadas por regras de inferência, e a tautologias conhecidas. - \section*{Teorema} - $\psi_1, \ldots, \psi_n \models \Psi$\\ - ($\Psi$ é consequẽncia lógica de $\psi_1, \ldots, \psi_n$) se e só se o conjunto ${{\psi_1, \ldots, \psi_n, \neg\Psi}}$ é inconsistente, isto é, não existe uma interpretação para a qual todas as fórmulas do conjunto tomam valor 1. - \par Para verificar se este conjunto de fórmulas é inconsistente usamos uma nova regra designada por resolução:\\\\ - $ \frac{\psi \rightarrow \theta~~~\Psi\vee\psi}{\theta\vee\psi} res $\\Indicam que aplicámos a regra/método da resolução. - \subsection*{Casos particulares} - \begin{enumerate} - \item{Se $ \theta \equiv \bot $ obtemos\\ - $\frac{\Psi \rightarrow \bot~~~\Psi\vee\psi}{\bot\vee\psi}$\\ - simplificando como: $\bot\vee\psi\equiv\psi~~$ e $~~\Psi\rightarrow\bot\equiv\ned\Psi\vee\bot\equiv\ned\Psi$ - \par Para este caso particular a regra da resolução é:\\ - $\frac{\neg\Psi~~~\Psi\vee\psi}{\psi} res ~~ \rightarrow \neg\Psi, \Psi $ são lineares complementares. - } - \item { - Se $ \theta\equiv\bot~~~e~~~\psi\equiv\bot $ (este é um caso particular do caso 1.) - \par Se $\psi\equiv\bot$ então $\Psi\vee\psi\equiv\Psi\vee\bot\equiv\Psi$\\ - Substituindo no caso particular da regra de resolução obtida em 1. tem-se\\ - $ \frac{\neg\Psi~~~\Psi}{\bot} res $ - } - \end{enumerate} - - \chapter*{Lógica Proposicional} - \section*{Definição} - \subsection*{Simbolos} - Variáveis proposicionais: $p, q, \Psi, \psi, \ldots$\\ - Constantes: $\bot e \top$ - Conetivos lógicos: $\wedge, \vee, \rightarrow, \leftrightarrow, \neg, \equiv$ - \subsection*{Regras de construção} - \begin{enumerate} - \item{Se $\psi$ é uma fórmula proposicional então $\neg\neg\psi$ é uma fórmula proposicional.} - \item{Se $\psi$ e $\theta$ são fórmulas proposicionais então $\psi\wedge\theta$ é uma fórmula proposicional.} - \item{Se $\psi$ e $\theta$ são fórmulas proposicionais então $\psi\vee\theta$ é uma fórmula proposicional.} - \item{Se $\psi$ e $\theta$ são fórmulas proposicionais então $\psi\rightarrow\theta$ é uma fórmula proposicional.} - \item{Se $\psi$ e $\theta$ são fórmulas proposicionais então $\psi\leftrightarrow\theta$ é uma fórmula proposicional.} - \end{enumerate} - - \section*{Dedução na lógica proposicional} - \begin{itemize} - \item {Verificar se uma fórmula é consequência lógica de um conjunto finito de fórmulas.\\ - $\psi_1, \ldots, \psi_n \models \Psi$ - } - \item {Vimos que a consequência lógica é válida se e só se a implicação\\ - $\psi_1 \wedge \psi_2 \wedge \ldots \wedge \psi_n \rightarrow \Psi$ é uma tautologia. - } - \end{itemize} - - \subsection*{Para verificar se uma consequência lógica é válida:} - \begin{enumerate} - \item Verificar se a implicação associada é uma tautologia. - \item Verificar se é possível obter (também são usados os termos deduzir, derivar, entre outros) $\Psi$ a partir de $\psi_1, \ldots, \psi_n$, recorrendo a regras de inferência e tautologias conhecidas (propriedades dos conetivos lógicos).\\ (através de uma sequência de deduções em que aplicamos as regras de inferências e tautologias), diz-se que existe uma prova de $\Psi$ a partir de $\psi_1, \ldots, \psi_n$ e escreve-se $\psi_1, \ldots, \psi_n \vdash \Psi$. - \item Aplicar a regra de resolução - Método de resolução. - \end{enumerate} - \subsubsection*{Método de resolução} - A consequência lógica $\psi_1, \ldots, \psi_n \models, \Psi$ é válida se e só se o conjunto de fórmulas {$\psi_1, \ldots, \psi_n, \neg\Psi$} é inconsistente, ou seja, este conjunto contém $\bot$ ou é possível deduzir $\bot$ a partir deste conjunto de fórmulas, isto é, existe uma prova de $\bot$ a partir de $\psi_1,\ldots,\psi_n,\neg\Psi$. - - \chapter*{Lógica de 1ª ordem} - \section*{Definição} { - Exemplo de uma fórmula da lógica proposicional:\\ - $(p \wedge q) \rightarrow r $\\ - Para traduzir frases do tipo:\\ - i) \color{red} todos \color{black} os gatos têm garras.\\ - ii) \color{red} alguns \color{black} alunos de MD têm 20.\\ - \par Passamos da lógica proposicional para a lógica de 1ª ordem (esta última engloba a outra). - } - \section*{Linguagem da lógica de 1ª ordem} { - \subsection*{Alfabeto} { - \begin{enumerate} - \item Variáveis: x, y, z, \ldots; - \item Conetivos lógicos da lógica proposicional: $\wedge, \vee, \rightarrow, \leftrightarrow, \neg, \equiv$; - \item Constantes da lógica proposicional: $\bot e \top$; - \item Os quantificadores $\forall~e~\exists$; - \item O símbolo de igualdade: =; - \item Símbolos de constantes; - \item Símbolos de funções com aridade $n \in N$ (isto é, com $n$ argumentos); - \item Símbolos de predicados. - \end{enumerate} - } - \subsection*{Termo} { - \begin{enumerate} - \item Cada variável e cada símbolo de constante é um termo; - \item { Se f é símbolo de função com aridade $n$ e $t_1, \ldots, t_n$ são termos então $f(t_1, \ldots, t_n)$ é um termo.\\\\ - Exemplo: { - \begin{itemize} - \item Variáveis: $x, y, z$; - \item Constantes: $a = 1$, $b = $ Maria, $c = $ Gato tareco; - \item Funções: pai(Maria), onde\\ Pai: $P\rightarrow P$, onde $P$ é o conjunto das pessoas. - \item Predicado: $par(x)="x$ é par\("\), $D=N$\\ $par(2)=1,~~par(3)=0$, etc. - \end{itemize} - Como é que se constroem as fórmulas da lógica de 1.ª ordem?\\ - Definição (recursiva) de fórmula: - \begin{itemize} - \item $P(t_1, \ldots, t_n)$ é uma fórmla, considerando $P$ um simbolo de predicado e $t_1,\ldots,t_n$ termos. - \item Se $\psi$ e $\Psi$ sao fórmulas então:\\ $\psi \wedge \Psi$, $\psi \vee \Psi$, $\psi \rightarrow \Psi$, $\psi \leftrightarrow \Psi$, $\neg\psi$, $\bot$ e $\top$ são fórmulas. - \item Se $\psi$ é uma fórmula e $x$ é uma variável então $\forall x \psi$ e $\exists x \psi$ também são fórmulas. - \item Se $t_1$ e $t_2$ são termos então $t_1 = t_2$ é uma fórmula. - \end{itemize} - } - } - \end{enumerate} - } - \subsection*{Átomo} { - Na lógica proposicional, os átomos são as proposições atómicas (ex: $p =$ "chove", $q = $ "vou à aula de MD")\\ - \par Os átomos da lógica de 1ª ordem são: - \begin{enumerate} - \item $\bot, \top$ - \item $t_1=t_2$, com $t_1$ e $t_2$ termos - \item $P(t_1,\ldots,t_n)$, onde $t_1,\ldots,t_n$ são termos e $P$ é um simbolo de predicado. - \end{enumerate} - \subsubsection*{Exemplo} { - Consideremos os espaços vetoriais estudados na ALGA.\\ - O alfabeto inclui: - \begin{itemize} - \item O símbolo de constante o que representa o elemento nulo dos espaço vetorial - \item Símbolos de funções - \begin{enumerate} - \item Para cada $\alpha \in R$, o símbolo de funções\\ $\alpha \cdot \_$\\ que tem aridade 1 correspondente à multiplicação escalar. - \item O símbolo de função + com aridade 2, que corresponde à adição de elementos do espaço vetorial. - \end{enumerate} - \end{itemize} - } - \subsubsection*{Exemplos} { - Converta as seguintes afirmações para linguagem simbólica da lógica de 1ª ordem: - \begin{enumerate} - \item{ \color{red}Todos \color{black} os gatos têm garras.\\ - \color{red} $\forall x$ \color{black} [$g(x) \rightarrow t(x)$]\\ - \color{red} Universo: $U$ = conjunto dos animais. - } - \item{ \color{red} Alguns \color{black} alunos de MD têm 20.\\ - \color{red} $\exists x$ \color{black} ($MD(x) \wedge V(x)$)\\ - MD(x) = "x é aluno de MD"\\ - V(x) = "x tem 20" - \color{red} Universo: $U$ = alunos da UA em 22/23 - } - \end{enumerate} - } - } - } - - \section*{Folha 1} - \subsection*{Exercício 2.} - \subsubsection*{c)} - \color{red} Todos \color{black} os insetos são mais leves do que \color{red} algum \color{black} mamífero.~~~~~\color{red} $\forall$ $\exists$\\ - \color{black} Predicados:\\ - $I(x)$ = ``x é um inseto``\\ - $L(y,z)$ = ``y é mais leve do que z``\\ - $M(w)$ = ``w é um mamífero``\\ - \par $\forall x \left(I(x) \rightarrow \exists y \left( M(y) \wedge L(x, y) \right) \right)$ - \par Obs: Alcance de cada quantificador:\\ - \begin{itemize} - \item Ocorrência de x ligada: $I(x)$ - \item Alcance de $\forall x$: $\left(I(x) \rightarrow \exists y \left( M(y) \wedge L(x, y \right) \right)$ - \item Ocorrências de y ligadas: $M(y)$ e $L(x, y)$ - \item Alcance de $\exists y$: $\left( M(y) \wedge L(x, y \right)$ - \end{itemize} - - - \chapter*{Fórmula fechada} { - \section*{Definição} { - Fórmula que não tem variáveis com occorrências livres. - \subsection*{Exemplo} { - $\forall x~\exists y~(P(x)~\rightarrow~R(x,y))$ é uma fórmula fechada. - \par $\exists y~((\forall x~P(x))~\wedge~R(x,y))$, esta fórmula não é uma fórmula fechada. - } - \subsection*{Negação de fórmula com quantificadores} { - \begin{enumerate} - \item $\neg (\forall x~\psi)~\equiv~\exists x~\neg \psi$. - \item $\neg (\exists x~\psi)~\equiv~\forall x~\neg \psi$. - \end{enumerate} - $\psi$ - parte da fórmula que está sob o quantificador. - } - } - \section*{Introdução das fórmulas da lógica de 1ª ordem} { - \subsection*{Definição} { - \begin{itemize} - \item Estrututa; - \item Valoração,~~~V:$var~\rightarrow~D$, onde $D$ é o conjunto das variáveis. - \end{itemize} - O conceito de valoração pode ser entendido por forma a podermos considerar a valoração de um termo.\\ - $V(a) = a$, se $a$ é uma constante $V(f(t_1,\ldots,t_n)) = f^M(V(t_1),\ldots,V(t_n))$. - \textbf{Obs:} Frequentemente denotamos o símbolo de função $f$ e a função correspondente na estrutura $f^M$, pela mesma letra. - } - \subsection*{Exemplo dos slides} { - $V(M(A, x)) = M^M(V(A), V(x)) = M(A^M, 2) = M(1,2) = |1-2| = |-1| = 1$,~~~~~~$V(A) = A$ porque $A$ é uma constante. - } - } - \section*{Interpretação de fórmulas} { - \subsection*{Exemplo de interpretação de fórmulas (ver slides)} { - \subsubsection*{i)} { - Mostre que $R(x, A)$ não é válida na interpretação $(M,V)$\\ - \par Note-se que $\neg (M,V)\models R(x,A)$ se e só se $(M,V) \models \neg R(x,A)$ ($\neg R(x,A)$ é válida na interpretação $(M,V)$)\\ - \par $V(\neg R(x,A))\equiv\neg R(V(x),V(A))\equiv\neg R(2, A^M)\equiv\neg R(2, 1)\\\equiv\neg(2 < 1)\equiv\neg\bot\equiv\top $\\Logo, $\neg R(x, A)$ é valida na interpretação $(M,V)$, isto é, $(M,V)\models\neg R(x, A)$\\ - Isto é equivalente a afirmar que $R(x,A)$ não é válida nesta interpretação. - } - } - } - } - \chapter*{Forma normal de Skolem} { - \section*{Definição} { - Uma fórmula $\phi$ é dita em forma normal de Skolem se $\phi$ é uma fórmula na forma normal conjuntiva e não contém nenhum quantificador universal. - } - \section*{Exemplo} { - \subsection*{1)} { - $\forall x~P(x, f(x))\wedge\neg R(x) $, onde $f$ é uma função e $R$ e $P$ são predicados.\\ - } - \subsection*{2)} { - $\forall x~\forall y~(P(x, f(x)) \wedge (\neg R(x)~\vee~P(x,y)))$ - \subsubsection*{Ideia} { - \begin{enumerate} - \item Convertemos $F$ numa fórmula $G$ que está na FNC prenex.\\ Note-se que $F \equiv G$ - \item A partir de $G$ obtemos uma fórmula $H$ que está na forma normal de Skolem. - \end{enumerate} - \textbf{Para tal:}\\ - \begin{itemize} - \item Se no início da fórmula temos um quantificador do tipo $\exists x$, substituimos todas as ocorrências de $x$ por um símbolo $a$ que represente uma constante e eliminamos o quantificador $\equiv x$. - \item Se na fórmula existe um quantificador existencial $\exists x_k$ com os quantificadores universais $\forall x_1~\forall x_2~\dots~\forall x_{k-1}$, à sua esquerda, substituimos todas as ocorrências de $x_k$ por um símbolo de função que ainda não esteja na fórmula, por exemplo $f$, que tem nos seus argumentos as variáveis $x_1, x_2, \dots, x_{k-1}$, isto é, $x_k$ é substituido por $f(x_1,\ldots,x_{k-1})$.\\\textbf{Atenção:} A fórmula $H$ que obtemos na forma normal de Skolen pode não ser (logicamente) equivalente à fórmula $G$ escrita na FNC prenex ou à fórmula $F$ original. - \end{itemize} - } - } - } - } \end{document}