2022-11-11 14:43:34 +00:00
|
|
|
import re
|
|
|
|
|
2022-11-09 14:52:30 +00:00
|
|
|
|
|
|
|
# Constantes para indexar os tuplos:
|
2022-11-11 14:43:34 +00:00
|
|
|
NAME, DATE, OPEN, MAX, MIN, CLOSE, VOLUME = 0, 1, 2, 3, 4, 5, 6
|
|
|
|
|
2022-11-09 14:52:30 +00:00
|
|
|
|
|
|
|
def main():
|
2022-11-11 14:43:34 +00:00
|
|
|
lst = loadStockFile("datafiles/nasdaq.csv")
|
2022-11-09 14:52:30 +00:00
|
|
|
# Show just first and last tuples:
|
|
|
|
print("first:", lst[1])
|
|
|
|
print("last:", lst[-1])
|
|
|
|
|
|
|
|
print("a) totVol=", totalVolume(lst))
|
|
|
|
|
|
|
|
print("b) maxVal=", maxValorization(lst))
|
|
|
|
|
|
|
|
stocksDic = stocksByDateByName(lst)
|
|
|
|
print("c) CSCO@11:", stocksDic['2020-10-12']['CSCO'])
|
|
|
|
print("c) AMZN@22:", stocksDic['2020-10-22']['AMZN'])
|
|
|
|
|
2022-11-11 14:43:34 +00:00
|
|
|
# Parte incompleta
|
2022-11-09 14:52:30 +00:00
|
|
|
port = {'NFLX': 100, 'CSCO': 80}
|
|
|
|
print("d) portfolio@01:", portfolioValue(stocksDic, port, "2020-10-01"))
|
|
|
|
print("d) portfolio@30:", portfolioValue(stocksDic, port, "2020-10-30"))
|
|
|
|
|
2022-11-11 14:43:34 +00:00
|
|
|
|
2022-11-09 14:52:30 +00:00
|
|
|
def loadStockFile(filename):
|
|
|
|
lst = []
|
|
|
|
with open(filename) as f:
|
|
|
|
for line in f:
|
|
|
|
parts = line.strip().split('\t')
|
|
|
|
name = parts[NAME]
|
|
|
|
date = parts[DATE]
|
|
|
|
tup = (name, date, float(parts[OPEN]), float(parts[MAX]),
|
|
|
|
float(parts[MIN]), float(parts[CLOSE]), int(parts[VOLUME]))
|
|
|
|
lst.append(tup)
|
|
|
|
return lst
|
|
|
|
|
2022-11-11 14:43:34 +00:00
|
|
|
|
2022-11-09 14:52:30 +00:00
|
|
|
def totalVolume(lst):
|
|
|
|
totVol = {}
|
|
|
|
# Complete ...
|
2022-11-11 14:43:34 +00:00
|
|
|
for tup in totVol:
|
|
|
|
if tup[NAME] not in totVol:
|
|
|
|
totVol[tup[NAME]] = tup[VOLUME]
|
|
|
|
else:
|
|
|
|
totVol[tup[NAME]] += tup[VOLUME]
|
2022-11-09 14:52:30 +00:00
|
|
|
|
|
|
|
return totVol
|
|
|
|
|
2022-11-11 14:43:34 +00:00
|
|
|
|
2022-11-09 14:52:30 +00:00
|
|
|
def maxValorization(lst):
|
|
|
|
vMax = {}
|
|
|
|
# Complete ...
|
2022-11-11 14:43:34 +00:00
|
|
|
for data in range(1, 31):
|
|
|
|
maxDiario = 0
|
|
|
|
maxDiarioComp = "No data"
|
|
|
|
for tup in lst:
|
|
|
|
pat = r"0[1-9]"
|
|
|
|
dia = tup[DATE].split('-')[2]
|
|
|
|
if re.match(pat, dia):
|
|
|
|
dia = dia[1]
|
|
|
|
if data == int(dia):
|
|
|
|
maxcomp = tup[OPEN]/tup[CLOSE] * 100
|
|
|
|
if maxcomp > maxDiario:
|
|
|
|
maxDiario = maxcomp
|
|
|
|
maxDiarioComp = tup[NAME]
|
|
|
|
|
|
|
|
if maxDiarioComp != "No data":
|
|
|
|
vMax[data] = (maxDiarioComp, f"{maxDiario:.1f}%")
|
2022-11-09 14:52:30 +00:00
|
|
|
|
|
|
|
return vMax
|
|
|
|
|
2022-11-11 14:43:34 +00:00
|
|
|
|
2022-11-09 14:52:30 +00:00
|
|
|
def stocksByDateByName(lst):
|
|
|
|
dic = {}
|
|
|
|
# Complete ...
|
2022-11-11 14:43:34 +00:00
|
|
|
for tup in lst:
|
|
|
|
if tup[DATE] not in dic:
|
|
|
|
dic[tup[DATE]] = {}
|
|
|
|
dic[tup[DATE]][tup[NAME]] = tup
|
2022-11-09 14:52:30 +00:00
|
|
|
|
|
|
|
return dic
|
|
|
|
|
2022-11-11 14:43:34 +00:00
|
|
|
|
|
|
|
# Função não completa
|
2022-11-09 14:52:30 +00:00
|
|
|
def portfolioValue(stocks, portfolio, date):
|
|
|
|
assert date in stocks
|
|
|
|
val = 0.0
|
|
|
|
# Complete ...
|
|
|
|
|
|
|
|
return val
|
|
|
|
|
2022-11-11 14:43:34 +00:00
|
|
|
|
2022-11-09 14:52:30 +00:00
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|