
Rúben Gomes (113435) ⋅ João Bastos (113470) ⋅ Tiago Garcia (114184) – 30/12/2024

1. Introduction

2. Features

2.1. API Endpoints

2.2. Client Interaction

3. Decisions

3.1. Usage of the Di�e-Hellman Key Exchange

3.2. Symmetric Encryption

3.3. Authentication

3.4. File Handling

3.5. Session-Related Content

3.6. Hashing

3.7. Database

3.8. Modularized Server

3.9. Roles

4. ASVS Analysis

4.1. V3 Session Management

5. Conclusions

This document serves as the final report for the SIO-2425 project. This project serves as a way to demonstrate the practical

application of some of the concepts learned throughout the course (Authentication, Access Control, Session Management and

Stored Cryptography). On a analysis perspective, it will be focused on the V3 (Session Management) chapter of the OWASP

ASVS.

This report will cover the features implemented, the decisions made as a group, the analysis of the implementation, and

finally the results and conclusions of the project.

The features of the project are the ones present in the course project description, but with an extra feature, the possibility to

reset the database of the server. This was shown to be useful for testing purposes, but it should be disabled/deleted in a

production environment.

The API has a list of endpoints that require different permission levels to access. Mainly, it’s divided into 3 categories:

• Anonymous: No authentication required.

• Authenticated: Authentication required.

• Authorized: Authentication and permissions required.

GET / → Returns a ping

message.

N/A N/A N/A

POST /reset → Resets the

database and deletes all

data.

• Content-Type:

application/json

• password : The reset

password.

123

N/A

GET /org/list → Returns a

list of all organizations.

N/A N/A N/A

POST /org/create → Creates

a new organization.

• Content-Type:

application/octet-stream

• name : Organization

name.

• username : Manager

username.

• full_name : Manager full

name.

• email : Manager email.

• public_key : Manager

public key.

N/A

GET /�le/get/<�le_handle>/

content → Downloads the

file content.

N/A N/A N/A

POST /user/login → Logs in

a user.

• Content-Type:

application/json

• org : Organization name.

• username : User

username.

N/A

• Content-Type:

application/octet-stream

• Authorization: token

• signature : Signature of

the challenge using the

private key.

N/A

GET /user/list → Returns a

list of all users

• Content-Type:

application/octet-stream

• Authorization: token

N/A • username : Filter by

username.

GET /user/<username>/roles

→ Returns a list of all roles

of a user.

• Authorization: token N/A N/A

GET /�le/list → Returns a list

of all files.

• Content-Type:

application/octet-stream

• Authorization: token

N/A • username : Filter by

username.

• datetime : Filter by

datetime. The datetime

filter has the following

fields:

◦ value : Epoch time in

seconds.

◦ relation : ot | eq |

nt . (One of the

following: older than,

equal to, newer than)

POST /user/logout → Logs

out a user.

• Authorization: token N/A N/A

POST /role/session/assume/

<role> → Assumes a role in

the session.

• Authorization: token N/A N/A

POST /role/session/drop/

<role> → Drops a role from

the session.

• Authorization: token N/A N/A

GET /role/session/list →

Lists the roles for the

session.

• Authorization: token N/A N/A

GET /role/<role>/list/users

→ Lists the users for a role.

• Authorization: token N/A N/A

GET /role/<role>/list/perms

→ Lists the permissions for

a role.

• Authorization: token N/A N/A

GET /role/perm/<perm>/

roles : → Lists the roles with

a permission.

• Authorization: token N/A N/A

POST /user/create → Creates

a new user.

• Content-Type:

application/octet-stream

• Authorization: token

• username : User’s

username.

• name : User’s name.

• email : User’s email.

• public_key : User’s public

key.

SUBJECT_NEW

POST /user/<username>/

suspend → Suspends a

user.

• Authorization: token N/A SUBJECT_DOWN

POST /user/<username>/

activate → Activates a user.

Authorization: token N/A SUBJECT_UP

POST /�le/upload/metadata

→ Uploads a file’s metadata.

• Content-Type:

application/octet-stream

• Authorization: token

• document_name :

Document name.

• key : Document key.

• alg : Document

algorithm.

DOC_NEW

POST /�le/upload/content →

Uploads a file’s content.

• Authorization: token

• Content-Type: multipart/

form-data

• file’s content as request

data

DOC_NEW

GET /�le/get/

<document_handle>/

metadata → Downloads a

file’s metadata.

• Authorization: token N/A DOC_READ

POST /�le/delete/

<document_handle> →

Deletes a file.

• Authorization: token N/A DOC_DELETE

POST /�le/acl → Updates

the ACL of a file.

• Content-Type:

application/octet-stream

• Authorization: token

• document_handle :

Document handle.

• role : Role name.

• perm : Permission name.

• operation : add |

remove . (One of the

following: add, remove)

DOC_ACL

POST /role/create → Creates

a new role.

• Content-Type:

application/octet-stream

• Authorization: token

• role : Role name. ROLE_NEW

POST /role/<role>/suspend

→ Suspends a role.

• Authorization: token N/A ROLE_DOWN

POST /role/<role>/activate

→ Activates a role

• Authorization: token N/A ROLE_UP

POST /role/<role>/user/add/

<username> → Adds a user

to a role.

• Authorization: token N/A ROLE_MOD

POST /role/<role>/user/

remove/<username> →

Removes a user from a role.

• Authorization: token N/A ROLE_MOD

POST /role/<role>/perm/

add/<perm> → Adds a

permission to a role.

• Authorization: token N/A ROLE_MOD

POST /role/<role>/perm/

remove/<perm> → Removes

a permission from a role.

• Authorization: token N/A ROLE_MOD

For the client, each command is executed via terminal, and it is used multiple tools with specific functionalities:

• argparse [1] → Check for errors in arguments given by the user.

• logging [2] → Logging system to send out messages such as errors.

• os [3] → Add path to local folder ~/.sio to save or load any files used by the current command.

• requests [4] → Main library to allow communication from the client to the API.

• JSON [5] → Main library to store and exchange data between the client and API.

For every command the argument -r is present to set the APIs address. It is needed to define if it wasn’t previously, otherwise

an error is cast with the corresponding message.

To use the API, it is first needed to create a public key to create an organization with the key. The command

rep_subject_credentials generates a key-pair using RSA with a given password and saves both public and private keys different

files under the folder mentioned before.

The command rep_create_org creates an organization. In order to do that, the client must give the file containing his public

key in order to create a session afterwards.

For the client to use the Authenticated API, the command rep_create_session allows the user to create a session and assume

an identity. This command also protects information that shouldn’t be visible to outsiders when it’s being transferred between

the client and the server.

To protect the information, the client and the server initiate a Diffie-Hellman [6] key exchange where both create a key pair

with the same parameters and share each other their public key to derive with their own private key and obtain a common

key which can be used to encrypt and decrypt information between both entities.

generate the parameters and the key pair
generator = 2; key_size = 1024
parameters = generate_parameters(generator, key_size)
private_key, public_key = generate_key_pair(parameters)

send the parameters and the public key to the server
req = requests.post('json with parameters and public key...')

receive the server's public key
response = req.get('json with server public key...')
server_public_key = serialization.load_pem_public_key(bytes.fromhex(response['public_key']))

obtain the derived key
derived_key = derive_keys(private_key, server_public_key)

PYTHON

If the exchange is successful, the client will attempt to log in using its private key that should be given when executing this

command. This process is explained in the decision chapter, under Authentication, but in short, the server will send a

challenge to the client, which the client will sign with its private key (from a different key pair from Diffie-Hellman) and send

back to the server. If the server can verify the signature, the client is authenticated and a session is created. This is the same

method used in SSH.

The command rep_list_org lists all organizations present in the server. Since it requires no authentication, it is a simple

command that sends a GET request to the API and prints the response.

However, it is important to note that the response is encrypted and must be decrypted before being printed. In order to

achieve this, the client uses a symmetric encryption algorithm that uses an Initialization Vector (IV) to decrypt the response.

This is done by the function decrypt_request_with_iv that receives the encrypted response, where it separates the IV from the

encrypted text (first 16 bytes being the IV) and returns the decrypted response.

It could be argued that if a user is authenticated, the response could be encrypted/decrypted using the derived key from the

Diffie-Hellman key exchange, but since the information is publicly available, it’s not really needed.

The command rep_list_users lists all users of an organization. It requires the user to be authenticated and the response is

encrypted with the derived key from the Diffie-Hellman key exchange. Optionally, the user can query for a specific user by

providing the username as an argument.

First, the API checks if the user is authenticated (has a session file) and the username was given as an argument. Then, it sends

a GET request to the server. The data of the request is encrypted with the derived key, created with the initialization of the

session.

Finally, if the request was successful, the data is decrypted and printed to the screen.

With the command rep_assume_role , the user can assume a role in the session. This command requires the user to be

authenticated and the role to be assumed. The role is sent to the server in a POST request, where the role name is used as a

parameter in the URL. This way, there is no need to send anything in the body of the request, therefore there is no need to

encrypt the data. The server will check if the user has the permission to assume the role and if the role exists.

If everything is correct, the server will return a 200 status code, otherwise it will return an error message. The API will print the

message to the screen and exit with the corresponding status code.

(response):
 iv = response[:16]
 cipher = response[16:]

decrypt the response (simpli�ed)
 plaintext = decrypt(cipher, iv)

need to decode the bytes to string
 plaintext.decode()

PYTHON

The command rep_add_role allows the user to add a role to the organization. This command requires the user to be

authenticated and the role to be added. The role is sent to the server in a POST request, where the role name is sent in the

body of the request. The data is encrypted with the derived key from the Diffie-Hellman key exchange.

If the request is successful, the server will return a 201 status code, otherwise it will return an error message. The API will print

the message to the screen and exit with the corresponding status code, as per usual.

Given a role name and a valid permission/username, the rep_add_permission command allows a user to add certain

permissions to a specific role in an organization (if the user has permissions to do that) or a username to that role.

First, since there’s only some permissions, it’s checked if it corresponds to one of them and if not, it assumes it’s a username.

It then sends a POST request to the server, with the role and permission/username on the URL. With this of course, there is

no need for encryption. It also sends the session token (which could be encrypted as mentioned in the analysis) in the header.

Like the other commands, if the request is successful, the server will return a 201 status code, otherwise it will return an error

message. The API will print the message to the screen and exit with the corresponding status code.

Similar to the previous command, the rep_remove_permission command allows a user to remove certain permissions from a

specific role in an organization (if the user has permissions to do that) or a username from that role.

It follows the same steps as the rep_add_permission command, but instead of adding, it removes the permission/username

from the role.

The command rep_suspend_role allows the user to suspend a role in the organization. This command requires the user to be

authenticated and the role to be suspended. The role is sent to the server in a POST request, where the role name is used as

a parameter in the URL. This way, there is no need to send anything in the body of the request, therefore there is no need to

encrypt the data. The server will check if the user has the permission to suspend the role.

The session token is also sent in the header, so that the server knows who is attempting to access the endpoint.

An error can occur if the role provided oes not exist (since the endpoint doesn’t exist, it will return a "Failed to obtain response

from server." error).

If everything is correct, the server will return a 200 status code, otherwise it will return an error message. The API will print the

message to the screen and exit with the corresponding status code.

The command rep_reactivate_role allows the user to reactivate a role in the organization. This command requires the user to

be authenticated and the role to be reactivated. The role is sent to the server in a POST request, where the role name is used

as a parameter in the URL. This way, there is no need to send anything in the body of the request, therefore there is no need

to encrypt the data. The server will also check if the user has the permission to reactivate the role.

This command is similar to rep_suspend_role , but instead of suspending a role, it reactivates a suspended role.

This command (rep_drop_role) is, once again, similar to the previous commands in terms of how it works. The only difference

being that it makes the current user drop the provided role.

The command rep_list_roles requires a session token in order to function. Given that the token is present, it sends a simple

GET request to the server, where it returns the existing roles in the current organization.

The returning content is encrypted using the Diffie-Hellman derived key, calculated when the session was created.

Like before, the roles are printed to the screen, and any errors would also be printed, with the corresponding exit codes

properly returned.

The following command rep_list_role_subjects is similar to the previous command (rep_list_roles), except this command will

return the subjects that have a specific role. This role is given as an argument and should be provided beforehand when

executing the command.

This command (rep_list_subject_roles) is very similar to the rep_list_role_subjects command, but with one key difference. This

command is meant to list the roles of a subject. The implementation of the command is, as mentioned before, similar to the

role subjects command.

Another command with a similar implementation of the previous ones, the rep_list_roles returns a list of the permissions that

someone with that role would have on the organization.

Once again, this command has an almost identical implementation of the previous commands, the command

rep_list_permission_roles gives the user a list of roles that have a specific permission, given as an argument before calling said

command.

The command rep_add_subject aims to give the possibility of a user to be able to add another user to the current

organization. This is, of course, a command that requires specific permissions in order to do this.

First, it checks for the existence of a session file. Then, it sends a POST request to the server, with the information of the

subject to be added. These include the username , full_name , email and public_key . This content is encrypted with the

derived key from the Diffie-Hellman key exchange from the user that is executing the command.

According to the success of the previous request, a message will be printed back to the user.

This command (rep_suspend_subject) allows for a user (authenticated and with the required permission) to suspend a subject

from an organization.

The username is parsed in the URL, and the session token is, as usual, sent in the header of the request.

The following command rep_activate_subject has a similar implementation as the rep_suspend_subject command. The key

difference is that instead of activating a subject, it suspends a subject. In order to activate a subject, the subject must be in a

suspended state.

Using the command rep_add_doc allows the user to upload a document to the current organization his in. The file given is

encrypted with symmetric encryption and the key, the document’s name and the algorith used is upload as it’s metadata to

the server.

Of course, the information is then encrypted with the derived key located in the session file before sending to the server with

a POST request.

If the upload is successful, the client proceeds to upload the encrypted content, along with a hash of the content for the server

to check for integrity.

In order to modify the ACL of an organization, the user must have the permission DOC_ACL . Once that permission is present,

the command rep_acl_doc can be used to change specific role’s permissions such as

• DOC_ACL → Allows the person holding the given role to change the ACL.

• DOC_READ → Allows the person holding the given role to read the document.

• DOC_DELETE → Allows the person holding the given role to delete the .

#Encrypt content
key, content = encrypt_�le(BASE_DIR + args.�le, BASE_DIR + 'encryptedText')

metadata = {'document_name' : args.name, 'key' : key.hex(), 'alg' : 'AES-CFB' }

PYTHON

Encrypting metadata
derived_key = bytes.fromhex(args.session['derived_key'])
metadata = encrypt(metadata, derived_key).hex()

headers = {
'Authorization': args.session['token'],
'Content-Type': 'application/octet-stream'

}
req = requests.post(f'http://{state['REP_ADDRESS']}/�le/upload/metadata',
 data=metadata,
 headers=headers)

PYTHON

#Upload Document content
�le = {'�le' : (BASE_DIR + args.�le, content)}

req = requests.post(f'http://{state['REP_ADDRESS']}/�le/upload/content',
 �les=�le,
 headers={'Authorization': args.session['token'],

'File-Checksum' : digest.get_hash(content)})

PYTHON

Every document has it’s metadata that includes the �le handle and key . To get the metadata of a specific document, the

command rep_get_doc_metadata sends a GET request and with the derived key the response is decrypted. Using the �le

handle we can then get the file.

This command (rep_get_�le) is relatively simple, the client provides the file handle to the server, and it is given the file’s

content which is either written on the screen or saved in a file given by the user.

Given the document’s metadata and the file’s content, what’s left to do is to get the actual content by decrypting it. As such,

using the command rep_decrypt_�le the file’s content is decrypted using the key given in its metadata

The command rep_get_doc_�le is essentially the union of the last three commands. The document’s name given by the user is

hashed and a GET request is sent to the server to acquire the metadata.

The metadata is then decrypted, and we get the �le handle needed to get it’s content by sending another GET request. If

successful, the hash of the file’s content must be equal to the file handle, this way we see if the file’s integrity is maintained.

Once having both the metadata and the file’s content, the client decrypts it like it’s being done in the command

rep_decrypt_�le . The file’s content is written to a temporary file, and it’s used symmetric decryption to get the plaintext using

the key stored in the metadata.

The command rep_list_docs allows the user to get a list of all documents in the organization.

To make it organized, the command can be executed with a date and specify if the documents must be older, newer or

created in that specific date, or it can be filtered by who created the document.

content = symmetric_encryption.decrypt_�le(bytes.fromhex(metadata['key']), BASE_DIR + args.encrypted)
PYTHON

doc_name = digest.get_hash(bytes(args.name, encoding='utf-8'))
metadata = requests.get(f'http://{state['REP_ADDRESS']}/�le/get/' + doc_name + '/metadata', headers={'Authorization': args.session['token']})

PYTHON

�le = requests.get(f'http://{state['REP_ADDRESS']}/�le/get/' + metadata['�le_handle'] + '/content')
�le = �le.content

 digest.get_hash(�le) == metadata['�le_handle']:
 logger.error("File's integrity was lost.")
 sys.exit(-1)

PYTHON

 open(BASE_DIR + 'encrypted_�le', 'wb') f:
 f.write(�le)

content = symmetric_encryption.decrypt_�le(bytes.fromhex(metadata['key']), BASE_DIR + 'encrypted_�le')
os.remove(BASE_DIR + 'encrypted_�le')

PYTHON

The payload simply contains nothing if there’s no subject or date given, or it contains the username, date or both.

The following example shows how the endpoint may be called specifying the date and the username.

payload = {} # Payload may be sent empty if no �lters are needed

If the username is given
payload['username'] = args.username[0]
If the date is given
payload['datetime'] = {'value': args.date[0], 'relation': args.date[1]}

payload = json.dumps(payload)
payload = encrypt(payload, derived_key).hex()

headers = {
'Authorization': args.session['token'],
'Content-Type': 'application/octet-stream'

}
req = requests.get(f'http://{state['REP_ADDRESS']}/�le/list', data=payload, headers=headers)

PYTHON

In this topic, it’ll be presented and discussed the decisions made by the authors of the project thorough its development.

These can range from choices taken to be used for encryption to the implementation of the API itself.

The Diffie-Hellman key exchange is used in this project to securely create and maintain a key where both ends (client and

server) know that key, but never exchange it. Diffie-Hellman is great for this, since by exchanging the parameters used to

generate the key, and each other’s public key, both can end up with the same key, without ever needing to exchange it on a

public channel.

The key generation (public and private) is done using the parameters agreed on both ends (using the dh package from

cryptography).

The symmetric encryption used in this project is AES-CFB. This is a symmetric encryption algorithm that is widely used and

considered secure. This cipher was chosen due to the FeedBack functionality, that avoids the same plaintext to be encrypted

to the same ciphertext, which is a vulnerability present in the ECB mode.

This type of encryption is used to encrypt anonymous requests and files. Both use an Initialization Vector (IV) of 16 bytes, with

it being randomly generated.

When it comes to authentication, there were multiple options to create a secure and reliable system. The chosen method was

the same as the one used by ssh, which uses a key pair to authenticate the user.

The key pair is generated using the RSA algorithm, with a key size of 2048 bits. The public key is stored on the server,

associated to the user, and the private key is kept privately by the user.

During the login, the client sends a login request with the username and organization, to which the server generates and

returns a challenge (a string of 256 random characters). The client then signs this challenge with its private key and sends the

signature back to the server. The server then verifies the signature using the public key associated with the user and, if the

signature is valid, the user is authenticated and thus the session is validated.

As mentioned before, the files are encrypted symmetrically. The key used to decrypt them is within its metadata, which can

only be accessed with the required permissions. The encryption and decryption is done by blocks (or chunks) of 2 bytes.

By default, all keys, files and session files are stored under ~/.sio on the client side. In order to clear all files generated by the

application, the user must run rm -r ~/.sio/

For the hashing, it was used the SHA256 hashing mechanism, since it produces a 256 byte value. This is used to check the file

integrity when going from Client → Server and vice versa.

11

The authors of this project have chosen to use a database to store all server-side content (except for the files' content).

The database used in this project is SQLite3. This was chosen due to the authors' familiarity with it, its simplicity and the fact

that it is a single file, which makes it easier to manage and distribute. SQLAlchemy was also used to interact with the database,

as it provides a more abstract way to interact with the database and to have the ability to have the dataclasses corresponding

to the tables. When needed, it can be reset using an endpoint mentioned in the Features chapter.

The server is modularized in order to make it easier to maintain and expand.

For this, Flask’s Blueprints were used. This allows for the server to be divided into multiple modules, each with its own set of

endpoints.

Each service has its own file and class, which makes it easier to understand and maintain. This also makes it easier to add new

services to the server, as they can be added as new files and classes. This also allows for the endpoints to be easily changed as

there are no real operations being done on them, but instead they are just calling the respective service.

The roles are used to define the permissions of each user. The permissions are stored, viewed and treated as seen in other

services, like Discord. This approach is as follows:

Since it is stored in bits, validating a permission or adding it to a role is very easy, since it’ll be just bit-wise operations.

To check if a role has a permission, it can be easily done by looking at the bit corresponding to the permission, and do a

simple AND operation with said bit (that bit has to be 1). For this, the following function was created:

To change a permission associated with a role, all that is needed is a OR operator (to add) or a AND operator (to remove) with

the current role’s permissions and the bit we want to enable (permission to give). This bit has to be also 1. For this, the

following function was created, returning the resulting bit array:

(Enum):
 DOC_ACL = 0b000000000001
 DOC_READ = 0b000000000010
 DOC_DELETE = 0b000000000100

#...

PYTHON

(bit_array: int, perm_to_check: int) -> bool:
 bit_array & perm_to_check == perm_to_check

PYTHON

(bit_array: int, perm: Perm, operation: PermOperation) -> int:
 operation == PermOperation.ADD:

 bit_array | perm.value
 bit_array & ~perm.value

PYTHON

For the analysis section, the project will be evaluated under the scope of the V3 (Session Management) chapter of the OWASP

ASVS, using version v4.0.3. This will include an assessment of the session management mechanisms implemented, as well as

any vulnerabilities identified and possible mitigations.

3.1.1 Verify the application never reveals session tokens in URL parameters. ✔ ✔

The current implementation meets the requirement, as the session tokens are not exposed in the URL parameters but

instead are sent in the Authorization header.

This way, instead of parsing the URL for the token, the server can directly access the token from the header, which is a more

secure method of handling session tokens. This is done with the following line of code (including the necessary error

handling):

This piece of code is present in all endpoints that require a session token, ensuring that the token is always sent in the header

and never in the URL.

3.2.1 Verify the application generates a new session token on user

authentication.

✔ ✔

3.2.2 Verify that session tokens possess at least 64 bits of entropy. ✔ ✔

3.2.3 Verify the application only stores session tokens in the browser using

secure methods such as appropriately secured cookies (see section 3.4) or

HTML 5 session storage.

✗ ✗

3.2.4 Verify that session tokens are generated using approved cryptographic

algorithms.

✔ ✔

The application generates a new session token on session creation when a user logs in.

token = request.headers.get("Authorization")
 session_token:

 jsonify({"error": "No session token"}), 400

PYTHON

This token is generated using the secrets.token_hex(128) function, which generates a 256-character hexadecimal string,

providing more than 64 bits of entropy. This function has been certified as secure by OWASP in their cheat sheet series [7].

This generation is implemented in the code as follows:

This requirement is not applicable to the current implementation, as there is no browser involved with the application and

therefore not used to store any session tokens.

3.3.1 Verify that logout and expiration invalidate the session token, such that the

back button or a downstream relying party does not resume an

authenticated session, including across relying parties.

✔ ✔

3.3.2 If authenticators permit users to remain logged in, verify that re-

authentication occurs periodically both when actively used or after an idle

period.

✔ ✗

3.3.3 Verify that the application gives the option to terminate all other active

sessions after a successful password change (including change via

password reset/recovery), and that this is effective across the application,

federated login (if present), and any relying parties.

✗ ✗

3.3.4 Verify that users are able to view and (having re-entered login credentials)

log out of any or all currently active sessions and devices.

✔ ✗

Upon logout, or any session deletion, the session data is completely removed from the database also deleting the session

token, thus invalidating the session.

This is implemented in the code as follows, and accessed through the POST /user/logout endpoint:

(user: User, org: Organization) -> Session:
 session = Session(
 user_id=user.id,
 org_id=org.id,
 token=secrets.token_hex(128), # 256-character hexadecimal string
 roles=[],
 challenge=secrets.token_hex(128),
 veri�ed=False
)
 db.add(session)
 db.commit()
 db.refresh(session)

 session

PYTHON

PYTHON

https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html#secure-random-number-generation
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html#secure-random-number-generation

The application does not currently implement re-authentication after a period of inactivity.

This could be implemented by storing, for each session, the last time it was used, and checking this timestamp against the

current time when a request is made. If the time difference exceeds the threshold defined in ASVS (12 hours or 15 minutes of

inactivity, with 2FA), the user would be required to re-authenticate. This could be implemented in the code as follows:

This requirement is not applicable to the current implementation, as the application doesn’t use password for logins, and

therefore doesn’t have a password change mechanism and thus not having the mechanism to terminate all other active

sessions after a successful password change.

Currently, there isn’t a mechanism to view and log out of active sessions and devices.

This could be implemented by storing the device information in the session data and enabling an endpoint for the user to

view all active sessions and devices, and then revoke access to them. This endpoint could be implemented as follows:

This would return a list of all active sessions for the user, and then the user could choose to revoke access to any of them,

using the session id (not the token) through the following endpoint:

(session: Session) -> :
 db.delete(session)
 db.commit()

(session: Session) -> bool:
 (datetime.now() - session.last_used).total_seconds() > SESSION_TIMEOUT

PYTHON

():
 session_token = request.headers.get("Authorization")

 session_token:
 jsonify({"error": "No session token"}), 400

:
 session = SessionService.validate_session(session_token)

 SessionException e:
 jsonify({"error": e.message}), e.code

 user = UserService.get_user(session.user_id)
 user:

 jsonify({"error": "User not found"}), 404

 sessions = SessionService.get_user_sessions(user)
 jsonify({"sessions": sessions}), 200

PYTHON

PYTHON

3.4.1 Verify that cookie-based session tokens have the 'Secure' attribute set. ✗ ✗

3.4.2 Verify that cookie-based session tokens have the 'HttpOnly' attribute set. ✗ ✗

3.4.3 Verify that cookie-based session tokens utilize the 'SameSite' attribute to

limit exposure to cross-site request forgery attacks.

✗ ✗

3.4.4 Verify that cookie-based session tokens use the "__Host-" prefix so cookies

are only sent to the host that initially set the cookie.

✗ ✗

3.4.5 Verify that if the application is published under a domain name with other

applications that set or use session cookies that might disclose the session

cookies, set the path attribute in cookie-based session tokens using the

most precise path possible.

✗ ✗

None of the requirements are applicable to the current implementation, as the application does not use cookies to store any

data or to manage sessions.

3.5.1 Verify the application allows users to revoke OAuth tokens that form trust

relationships with linked applications.

✗ ✗

3.5.2 Verify the application uses session tokens rather than static API secrets and

keys, except with legacy implementations.

✔ ✔

(session_id):
 session_token = request.headers.get("Authorization")

 session_token:
 jsonify({"error": "No session token"}), 400

 current_session = SessionService.get_session(session_token)
 current_session:

 jsonify({"error": "Not authenticated"}), 401

 session = SessionService.get_session_by_id(session_id)
 session:

 jsonify({"error": "Session not found"}), 404

 session.user_id != current_session.user_id:
 jsonify({"error": "Unauthorized"}), 403

 SessionService.delete_session(session)
 jsonify({"message": f"Logged out from session with id {session_id}"}), 200

3.5.3 Verify that stateless session tokens use digital signatures, encryption, and

other countermeasures to protect against tampering, enveloping, replay,

null cipher, and key substitution attacks.

✔ ✗

This requirement is not applicable to the current implementation, as there is no OAuth service implemented in the

application.

The application uses that exact implementation, using session tokens instead of static API secrets and keys to manage

sessions as mentioned in the section 3.2 of the ASVS.

The server generates a session token upon login, using the function secrets.token_hex(128) , and sends it to the client. The

client then sends the token in the Authorization header in every request that requires authentication.

Since this topic involves a few different types of attacks, it’s best to address them individually:

These attacks could be tackled with the use of JWT (JSON Web Tokens). They support a exp field, that indicate the expiry date

of said packet (protects against Replay attacks). Expiry time could be adjusted dynamically according to client-server ping.

JWT also supports signatures, so with a given secret key, the server can verify the integrity of the token. The signature is

calculated using the header and payload of the token (with the content of the token being base64 encoded).

With the support of signatures, the server can verify the integrity of the token, and if it was tampered with, the signature

would not match the content of the token.

Another added layer of security could be the use of a counter, that is incremented with each request, where the server verifies

if the counter is correct, and vice versa.

The cipher python package used in the project, cryptohazmat , uses AES-CFB, that avoids null ciphers. Of course, any failure

within the package (or any other package) due to an update or a bug could eventually lead to a null cipher attack.

Since it is being used a Diffie-Hellman key exchange, the key is never sent over the network, the server and client end up with

the same key, so there is no key to be substituted. It is also not possible to substitute a key, that would require re-

authentication.

The current implementation does not encrypt the session token, which could be a vulnerability. This could be implemented by

encrypting the session token with a symmetric key (and use a strong algorithm, like AES-256), and then decrypting it on the

server side. This would protect the token from being read by an attacker, even if they manage to intercept it.

3.6.1 Verify that Relying Parties (RPs) specify the maximum authentication time

to Credential Service Providers (CSPs) and that CSPs re-authenticate the

user if they haven’t used a session within that period.

✗ ✗

3.6.2 Verify that Credential Service Providers (CSPs) inform Relying Parties (RPs)

of the last authentication event, to allow RPs to determine if they need to

re-authenticate the user.

✗ ✗

These requirements are not applicable to the current implementation, as the application does not have a federated

authentication system.

3.7.1 Verify the application ensures a full, valid login session or requires re-

authentication or secondary verification before allowing any sensitive

transactions or account modifications.

✔ ✗

Currently, the application does not require re-authentication or secondary verification before allowing sensitive transactions

or account modifications, it just checks if the user is authenticated and has the required permissions.

This could be implemented by adding a challenge signature to the request using the rsa key pair, which would be verified by

the server before allowing the transaction. This is the same mechanism already used for the login endpoint. To implement

this, every endpoint that involves sensitive transactions or account modifications would need to be updated to include the

challenge generation and signature verification.

The SIO-2425 project successfully demonstrates the practical application of critical security principles, including

authentication, access control, session management, and cryptography. Through the implementation of modularized server

architecture, robust session handling, and encrypted communication mechanisms, the project adheres to some industry

standards, where analyzing the OWASP ASVS gives the developers a broader landscape of what are the best practices, and

what needs to be done in order to achieve a more secure application, even though of course it’ll never be fully secure.

Despite these achievements, the analysis highlighted areas requiring further improvement, such as enhanced mechanisms for

session re-authentication, secure session management features, and the ability to terminate active sessions after sensitive

changes. Addressing these issues would further improve the system’s security posture and resilience against potential

vulnerabilities.

The methodologies and decisions applied throughout this project underline the importance of secure design in software

development. By integrating tools like Diffie-Hellman key exchange, AES encryption, and SHA256 hashing, the project ensures

data confidentiality, integrity, and authenticity. It was also a great learning opportunity for the authors, when it comes to

server-side development and design, as well as the importance of secure coding practices.

Future work could focus on refining the system to meet additional ASVS requirements and expanding its usability in real-world

applications. Overall, this project stands as a testament to the successful implementation of secure application principles and

the importance of continuous learning and iteration in cybersecurity practices.

. https://docs.python.org/3/library/argparse.html

. https://docs.python.org/3/library/logging.html

. https://docs.python.org/3/library/os.html

. https://requests.readthedocs.io/en/latest/

. https://docs.python.org/3/library/json.html

. https://cryptography.io/en/latest/hazmat/primitives/asymmetric/dh/

. https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html#secure-random-number-generation

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/dh/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/dh/
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html#secure-random-number-generation
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html#secure-random-number-generation

