120 lines
4.1 KiB
Python
120 lines
4.1 KiB
Python
#
|
|
# Module: cidades
|
|
#
|
|
# Implements a SearchDomain for find paths between cities
|
|
# using the tree_search module
|
|
#
|
|
# (c) Luis Seabra Lopes
|
|
# Introducao a Inteligencia Artificial, 2012-2020
|
|
# Inteligência Artificial, 2014-2023
|
|
#
|
|
|
|
|
|
from tree_search import *
|
|
|
|
class Cidades(SearchDomain):
|
|
def __init__(self,connections, coordinates):
|
|
self.connections = connections
|
|
self.coordinates = coordinates
|
|
def actions(self,city):
|
|
actlist = []
|
|
for (C1,C2,D) in self.connections:
|
|
if (C1==city):
|
|
actlist += [(C1,C2)]
|
|
elif (C2==city):
|
|
actlist += [(C2,C1)]
|
|
return actlist
|
|
def result(self,city,action):
|
|
(C1,C2) = action
|
|
if C1==city:
|
|
return C2
|
|
def cost(self, city, action):
|
|
pass
|
|
def heuristic(self, city, goal_city):
|
|
pass
|
|
def satisfies(self, city, goal_city):
|
|
return goal_city==city
|
|
|
|
|
|
cidades_portugal = Cidades(
|
|
# Ligacoes por estrada
|
|
[
|
|
('Coimbra', 'Leiria', 73),
|
|
('Aveiro', 'Agueda', 35),
|
|
('Porto', 'Agueda', 79),
|
|
('Agueda', 'Coimbra', 45),
|
|
('Viseu', 'Agueda', 78),
|
|
('Aveiro', 'Porto', 78),
|
|
('Aveiro', 'Coimbra', 65),
|
|
('Figueira', 'Aveiro', 77),
|
|
('Braga', 'Porto', 57),
|
|
('Viseu', 'Guarda', 75),
|
|
('Viseu', 'Coimbra', 91),
|
|
('Figueira', 'Coimbra', 52),
|
|
('Leiria', 'Castelo Branco', 169),
|
|
('Figueira', 'Leiria', 62),
|
|
('Leiria', 'Santarem', 78),
|
|
('Santarem', 'Lisboa', 82),
|
|
('Santarem', 'Castelo Branco', 160),
|
|
('Castelo Branco', 'Viseu', 174),
|
|
('Santarem', 'Evora', 122),
|
|
('Lisboa', 'Evora', 132),
|
|
('Evora', 'Beja', 105),
|
|
('Lisboa', 'Beja', 178),
|
|
('Faro', 'Beja', 147),
|
|
# extra
|
|
('Braga', 'Guimaraes', 25),
|
|
('Porto', 'Guimaraes', 44),
|
|
('Guarda', 'Covilha', 46),
|
|
('Viseu', 'Covilha', 57),
|
|
('Castelo Branco', 'Covilha', 62),
|
|
('Guarda', 'Castelo Branco', 96),
|
|
('Lamego','Guimaraes', 88),
|
|
('Lamego','Viseu', 47),
|
|
('Lamego','Guarda', 64),
|
|
('Portalegre','Castelo Branco', 64),
|
|
('Portalegre','Santarem', 157),
|
|
('Portalegre','Evora', 194) ],
|
|
|
|
# City coordinates
|
|
{ 'Aveiro': (41,215),
|
|
'Figueira': ( 24, 161),
|
|
'Coimbra': ( 60, 167),
|
|
'Agueda': ( 58, 208),
|
|
'Viseu': ( 104, 217),
|
|
'Braga': ( 61, 317),
|
|
'Porto': ( 45, 272),
|
|
'Lisboa': ( 0, 0),
|
|
'Santarem': ( 38, 59),
|
|
'Leiria': ( 28, 115),
|
|
'Castelo Branco': ( 140, 124),
|
|
'Guarda': ( 159, 204),
|
|
'Evora': (120, -10),
|
|
'Beja': (125, -110),
|
|
'Faro': (120, -250),
|
|
#extra
|
|
'Guimaraes': ( 71, 300),
|
|
'Covilha': ( 130, 175),
|
|
'Lamego' : (125,250),
|
|
'Portalegre': (130,170) }
|
|
)
|
|
|
|
|
|
|
|
|
|
p = SearchProblem(cidades_portugal,'Braga','Faro')
|
|
t = SearchTree(p,'breadth')
|
|
|
|
print(t.search())
|
|
|
|
|
|
# Atalho para obter caminho de c1 para c2 usando strategy:
|
|
def search_path(c1,c2,strategy):
|
|
my_prob = SearchProblem(cidades_portugal,c1,c2)
|
|
my_tree = SearchTree(my_prob)
|
|
my_tree.strategy = strategy
|
|
return my_tree.search()
|
|
|
|
|
|
|