
Automated Problem Solving

2023/2024

c©Lúıs Seabra Lopes

Departamento de Electrónica, Telecomunicações e Informática
Universidade de Aveiro

I Objectives

This document focuses on the problem of automatic problem solving using different search tech-
niques. In particular, through a list of exercices, this document guides the students in exploring
the use of tree search techniques. Constraint satisfaction search for assignment problems is also
convered. This document is used in the courses of Introduction on Artificial Intelligence, of the
Integraed Master on Computers and Telematics Engineering, and Artificial Intelligence, of the
Bachelor (licenciatura) on Informatics Engineering. The exercises will be done in 4 prac-
tical classes. For a good progress, the exercises that are in the thematic scope of a
given class should be completed before the next class.

II Tree Search

1 The base code

A complete implementation of the basic tree search algorithm can be found in module tree_search,
provided together with this document. This module contains the following classes.

• Class SearchDomain() - abstract class that defines the structure of application domains;

• Class SearchProblem(domain,initial,goal) - class for representing specific pro-
blems to be solved;

• Class SearchNode(state,parent) - class for representing search tree nodes

• Class SearchTree(problem) - class containing methods for the generation of a search
tree for a given problem.

As can be inferred from the adopted data structures, each instance of the class SearchTree
has access to the following attributes and methods:

• self.problem - The problem to be solved (an instance of SearchProblem);

• self.problem.domain - The application domain (an instance of SearchDomain) to
which the problem belongs;

1

• self.problem.domain.actions(state) - returns a list of the actions applicable in
state;

• self.problem.domain.result(state,action) - returns the result of action in
state;

• self.problem.domain.cost(state,action) - returns the cost of action in state;

• self.problem.domain.heuristic(state1,state2) - returns an estimate of the
cost of going from state1 to state2;

• self.problem.domain.satisfies(state,goal) - Checks if the given state sa-
tisfies the given goal

• self.problem.initial - the initial state;

• self.problem.goal - the goal state;

• self.problem.goal_test(state) - checks if state is the goal;

• self.strategy - the used search strategy;

• self.open_nodes - the queue of open nodes (tree leaves, to be expanded), where each
node is an instance of SearchNode;

• self.search() - the main search method.

The main method of the SearchTree class implements a generic tree search procedure,
based on a queue of open nodes:

def search(self):
while self.open_nodes != []:

node = self.open_nodes[0]
if self.problem.goal_test(node.state):

return self.get_path(node)
self.open_nodes[0:1] = []
lnewnodes = []
for a in self.problem.domain.actions(node.state):

newstate = self.problem.domain.result(node.state,a)
lnewnodes += [SearchNode(newstate,node)]

self.add_to_open(lnewnodes)
return None

The module cidades, with a specific application domain, which can be used for testing, is
also available with this document.

2 Exercices

The following exercices are extensions to the provided tree search module.

1. The implementation provided does not prevent loops. This leads to using more memory
space than needed in breadth-first search and to infinite loops in depth-first search. So,
change and/or add the necessary code in order to prevent the creation of branches with
loops. Test the program with the depth-first search strategy.

2

2. In the data structure used to represent the nodes in the search module, add a field to record
the depth of the node. It is considered that the root of the search tree is at depth 0.

3. Add a @property length in the SearchTree class to return the length of the found
solution, given by the number of state transitions from the initial state to the goal state.

4. Make the necessary changes to the tree_search module in order to support depth-limited
search.

5. Add code to the search() method from class SearchTree to calculate the total number
of terminal nodes (open or leaf nodes) and non-terminal nodes (expanded nodes, even if
without children) in the tree after completion of the search. This information should be
stored in attributes of the self.

6. As you know, the average branching factor is given by the ratio between the number of
child nodes (that is, all nodes except the root of the tree) and the number of parent
nodes (nonterminal or expanded nodes). Add a @property avg_branching in the
SearchTree class to to calculate the respective average branching factor.

7. In class Cidades (i.e. cities) of the module cidades, implement the cost() method,
which, given a state and an action, returns the cost of performing that action in that state.
In this case, for an action (C1, C2), corresponding to a transition from city C1 to city C2,
the cost should be the (road) distance between these cities.

8. In the data structure used in module tree_search to represent the nodes, add a field to
store the accumulated cost of all actions in the path from the root to the node. Modify
the search algorithm to record the accumulated cost in each node inserted in the tree.

9. Add a @property cost in the SearchTree class to return the total cost of the solution
found, given by the acumulated cost of the solution node.

10. Make the necessary changes to the code of the tree search module to support uniform
cost search.

11. Identify a suitable heuristic for the search domain class defined in module cidades (class
Cidades and implement the method heuristic() of this class.

12. In the data structure used to represent the nodes in the tree search module, add a field
to store the respective heuristic value.

13. Make the necessary changes to the SearchTree class to support greedy research.

14. Make the necessary changes to the SearchTree class to support A* search. Compare the
results of different search techniques.

15. Add code to the search() from class SearchTree to determine the node or nodes with
higher accumulated cost. This information should be stored in the form of a list in a field
of self.

16. Add code to the search() method of class SearchTree to determine the average depth
of the nodes in the generated tree. This information should be stored in a field of the self.

3

III Search with STRIPS operators

Attached to this description, you can find the module strips, with a new search domain based
on STRIPS operators. The module blocksworld implements predicates and STRIPS operators
for the well-known ”blocks world ”.

An operator, represented by a class derived from Operator, specifies the preconditions,
negative effects and positive effects of a class of actions:

class Stack(Operator):
args = [’X’,’Y’] # arguments
pc = [Holds(’X’),Free(’Y’)] # pre-conditions
neg = [Holds(’X’),Free(’Y’)] # negative effects
pos = [On(’X’,’Y’),HandFree(),Free(’X’)] # positive effects

We can instantiate an operator as in the following example:

>>> op = Stack.instanciate([’a’,’b’])
>>> op
Stack(a,b)
>>> print(op)
Stack([a,b], [Holds(a),Free(b)], [Holds(a),Free(b)],
[On(a,b),HandFree(),Free(a)])

This method is used to implement the actions() method in the search domain class
STRIPS.

>>> initial_state
[Floor(a),Floor(b),Floor(d),Holds(e),On(c,d),Free(a),Free(b),Free(c)]
>>> bwdomain = STRIPS()
>>> bwdomain.actions(initial_state)
[Stack(e,a), Stack(e,b), Stack(e,c), Putdown(e)]

1 Exerćıcios

Although most of the work has already been done, some details remain to be completed:

1. Implement the methods result() e satisfies() in the STRIPS class.

2. In the data structure used to represent the nodes in module tree_search, add an attri-
bute to record the action that led to that node. On the search tree, add an attribute plan
to register the sequence which constitutes the solution found. Modify the search algorithm
to assign the correct values to these attributes.

3. You can now try it, starting with the example created in module blocksworld:

>>> goal_state
[Floor(c), On(d,c), On(e,d), On(a,e), Floor(b)]
>>> p = SearchProblem(bwdomain,initial_state,goal_state)
>>> t = SearchTree(p)
>>> t.search()
>>> t.plan
[Stack(e,a), Unstack(c,d), Putdown(c), Pickup(d), Stack(d,c),

Unstack(e,a), Stack(e,d), Pickup(a), Stack(a,e)]

4

This search takes some time. 1 In part this is due to the complexity of the application
domain. But on the other hand, the check of repeated states that you implemented in
exercise II.2.1 is not appropriate for the blocks world, as it is implemented. Understand
why and introduce appropriate changes to solve this problem.

IV Constraint-based search for assignment problems

Together with this document, you can find theconstraintsearch module, similar to the
one developed in theoretical classes. The module provides a class ConstraintSearch that
allows solving assignment problems with constraints. The module rainhas (queens) creates an
instance of ConstraintSearch to solve the the 4 queens problem.

1 Exercises

1. Solve exercises IV.4 and IV.5 of the theoretical-practical guide using the constraintsearch
module.

2. The search() of class ConstraintSearch does not propagate constraints. Add a
method to propagate and use it in the search() method.

1Note that, given the use of dictionaries in the module strips, search behavior is non-deterministic and the
time it takes for the same problem is variable.

5

