
Knowledge Representation and Inference

2020/2021

c©Lúıs Seabra Lopes

Departamento de Electrónica, Telecomunicações e Informática
Universidade de Aveiro

Last update: 2020-11-28

I Objectives

The present list of exercices focuses on knowledge representation and associated inference mecha-
nisms. Work is based on a module with simple implementation of semantic networks. Students
will extend the initial version of the module with new functionalities. Recall now that a seman-
tic network represents knowledge in the form of a graph, where nodes represent entities (objects
or types) and edges represent relations between entities. We will also use a Bayesian network
module.

This list of exercices is used in the Artificial Intelligence, (Licenciatura em Engenharia In-
formática) and Introduction to Artificial Intelligence (Mestrado Integrado em Engenharia de
Computadores e Telemática) courses.

This work will be done in 4 to 5 practical classes. For a fruitful use of the classes,
exercises that are within the thematic scope of a given class should be completed
before the next class.

II Semantic Networks

1 The initial module

O módulo semantic network, fornecido em anexo, exporta um conjunto de classes para representar
relações semânticas:

The semantic network module exports a set of classes to represent semantic relations:

c l a s s R e l a t i o n :
d e f i n i t (s e l f , e1 , r e l , e2) :

s e l f . e n t i t y 1 = e1
s e l f . name = r e l
s e l f . e n t i t y 2 = e2

c l a s s A s s o c i a t i o n (R e l a t i o n) :

1

de f i n i t (s e l f , e1 , assoc , e2) :
R e l a t i o n . i n i t (s e l f , e1 , assoc , e2)

c l a s s Subtype (R e l a t i o n) :
d e f i n i t (s e l f , sub , supe r) :

R e l a t i o n . i n i t (s e l f , sub , ” subtype ” , supe r)

c l a s s Member (R e l a t i o n) :
d e f i n i t (s e l f , obj , type) :

R e l a t i o n . i n i t (s e l f , obj , ”member” , type)

Using these classes, we can represent generic associations (class Association) generalization
relations (class Subtype) and membership relations between objects to their respective types
(class member).

The relations of subtype and member allow inheritance of properties.

Examples:

>>> a = A s s o c i a t i o n (’ s o c r a t e s ’ , ’ p r o f e s s o r ’ , ’ f i l o s o f i a ’)
>>> s = Subtype (’homem ’ , ’ mamifero ’)
>>> m = Member (’ s o c r a t e s ’ , ’homem ’)
>>> s t r (a)
’ p r o f e s s o r (s o c r a t e s , f i l o s o f i a) ’
>>> s t r (s)
’ subtype (homem , mamifero) ’
>>> s t r (m)
’member (s o c r a t e s , homem) ’

Of course, a typical application of a semantic network is its use to represent the knowledge of
an agent. The agent may obtain knowledge from various sources, including human interlocutors
(users) with whom it interacts. With this module, we can associate the users to the relations
they declare, using the following class:

c l a s s D e c l a r a t i o n :
d e f i n i t (s e l f , u se r , r e l) :

s e l f . u s e r = u s e r
s e l f . r e l a t i o n = r e l

Here, we use the class Declaration to record that user declared the relation rel.

Examples:

>>> da = De c l a r a t i o n (’ d e s c a r t e s ’ , a)
>>> ds = De c l a r a t i o n (’ darw in ’ , s)
>>> dm = Dec l a r a t i o n (’ d e s c a r t e s ’ ,m)

>>> s t r (da)
’ d e c l (d e s c a r t e s , p r o f e s s o r (s o c r a t e s , f i l o s o f i a)) ’
>>> s t r (ds)
’ d e c l (darwin , subtype (homem , mamifero)) ’
>>> s t r (dm)
’ d e c l (d e s c a r t e s , member (s o c r a t e s , homem)) ’

Finally, the class SemanticNetwork represents a semantic network using a list of declarations
of relations:

2

c l a s s SemanticNetwork :
d e f i n i t (s e l f) :

s e l f . d e c l a r a t i o n s = []
d e f s t r (s e l f) :

pa s s
de f i n s e r t (s e l f , d e c l) :

s e l f . d e c l a r a t i o n s . append (d e c l)
d e f q u e r y l o c a l (s e l f , u s e r=None , e1=None , r e l=None , e2=None) :

s e l f . q u e r y r e s u l t = \
[d \

f o r d i n s e l f . d e c l a r a t i o n s \
i f (u s e r == None or d . u s e r==u s e r) \
and (e1 == None or d . r e l a t i o n . e n t i t y 1 == e1) \
and (r e l == None or d . r e l a t i o n . name == r e l) \
and (e2 == None or d . r e l a t i o n . e n t i t y 2 == e2)]

r e t u r n s e l f . q u e r y r e s u l t
d e f s h ow qu e r y r e s u l t (s e l f) :

pa s s

The function query local allows to obtain local information (that is, not inherited) about
the entities present on the network. This function can be parameterized by the user (user), the
name of the first entity involved in the relation (e1), the relationship name (rel) and the name
of the second entity involved in the relation (e2). The function will return all declarations that
satisfy specified parameters, some of which may be omitted.

Example of creating and querying a semantic network:

>>> z = SemanticNetwork ()
>>> z . i n s e r t (da)
>>> z . i n s e r t (ds)
>>> z . i n s e r t (dm)
>>> z . i n s e r t (D e c l a r a t i o n (’ darwin ’ , A s s o c i a t i o n (’ mamifero ’ , ’mamar ’ , ’ s im ’)))
>>> z . i n s e r t (D e c l a r a t i o n (’ darwin ’ , A s s o c i a t i o n (’homem ’ , ’ go s ta ’ , ’ c a rne ’)))
>>> z . i n s e r t (D e c l a r a t i o n (’ d e s c a r t e s ’ , Member (’ p l a t a o ’ , ’homem ’)))
>>> z . q u e r y l o c a l (u s e r=’ d e s c a r t e s ’ , r e l= ’member ’)
.
>>> z . s h ow qu e r y r e s u l t ()
d e c l (d e s c a r t e s , member (s o c r a t e s , homem))
d e c l (d e s c a r t e s , member (p l a tao , homem))
>>>

2 Exercises

The module described above is generic but contains some limitations. It would be interesting to
implement some additional functionality. For testing the new features, you can use the module
sn example, which contains an example of a semantic network with several declarations already
introduced. The examples given in some of the exercices refer to the contents of this module.

1. Develop a function that returns the list (of names) of existing associations.

2. Develop a function that returns the list of objects whose existence can be inferred from the
network, that is, a list of entities declared as instances of some type.

3. Develop a function that returns the list of existing users on the network.

3

4. Develop a function that returns the list of types on the network.

5. Develop a function that, given a entity, returns the list (of the names) of the locally declared
associations.

6. Develop a function that, given a user, returns the list (of the names) of the relations
declared by the user

7. Develop a function that, given a user, returns the number of different associations used in
the relations s/he has declared.

8. Develop a function that, given an entity, returns a list of tuples, in which each tuple contains
(the name of) a locally declared association and the user who declared it.

9. An entity A is predecessor (or ancestor) of an entity B if there is a chain of member and/or
Subtype relations connecting B to A. Develop a function that, given two entities (two types,
or one type and one object), return True if the first is the predecessor of the second, and
False otherwise.

>>> z . p r e d e c e s s o r (’ v e r t e b r a do ’ , ’ s o c r a t e s ’)
True
>>>
>>> z . p r e d e c e s s o r (’ v e r t e b r a do ’ , ’ f i l o s o f o ’)
F a l s e
>>>

10. Develop a function that, given two entities (two types, or a type and an object), where the
first is the predecessor of the second, return the list of entities found on the path from the
first to the second entity. If the first entity is not a predecessor of the second entity, the
function returns None.

>>> z . p r e d e c e s s o r p a t h (’ v e r t e b r a do ’ , ’ s o c r a t e s ’)
[’ v e r t e b r a do ’ , ’ mamifero ’ , ’homem ’ , ’ s o c r a t e s ’]
>>>

11. The function query local () does not return inherited knowledge. It only returns local de-
clarations for a given entity.

(a) Develop a new function query() in class SemanticNetwork that allows to obtain a list
with all local and inherited declarations for a given entity. The function receives as
input the entity and, optionally, the name of the association.

>>> z . query (’ s o c r a t e s ’ , ’ a l t u r a ’)
.
>>> z . s h ow qu e r y r e s u l t ()
d e c l (d e s c a r t e s , a l t u r a (mamifero , 1 . 2))
d e c l (d e s c a r t e s , a l t u r a (homem , 1 . 7 5))
d e c l (simao , a l t u r a (homem , 1 . 8 5))
d e c l (darwin , a l t u r a (homem , 1 . 7 5))

(b) Develop a new function query2() in class SemanticNetwork that returns all the local
declarations (including Member and Subtype) as well as inherited declarations (only
Association) in an entity. The function receives as input the entity and, optionally,
the name of a relation. (Note: You can use the function of the previous exercice to
build part of the result.)

4

12. Develop a new query function, query cancel (), similar to the query() function, but in which
there is cancellation of inheritance. In this case, when an association is declared in an
entity, the entity will not inherit this association from the predecessor entities. The function
receives as input the entity and the name of the association.

13. Develop a function query down() in class SemanticNetwork that, given a type and (the name
of) an association, please return a list with all statements of this association in descendant
entities.

14. Sometimes, in the absence of known general information, it may be useful to use inductive
inference. In this case, information on more specific entities (subtypes and / or instances)
can be used to infer general properties of a type. Develop a function query induce() that,
given a type and (the name of) an association, returns the most frequent value in the
descending entities.

15. So far, we have assumed that properties (associations) can have multiple values in a given
entity. For example, the association gosta (likes) can have several values (you can like fish
and meat).

In a professional system, there are other types of associations. There are associations that
admit only one value. For example, father admits only one value (the father of the person).

In the case of associations with numeric value, for example altura (height) or peso (weight),
the existence of several values can be treated as a distribution, where the average of these
values can be used as a reasonable approximation to the truth.

To test the following two exercices, uncomment the statements which are commented out
in the sn example module.

(a) Develop two classes derived from class Relation to represent associations with a single
value (class AssocOne) and associations with numerical values (class AssocNum).

(b) Develop a new function query local assoc () in class SemanticNetwork, which allows
querying values of the local associations of a given entity, taking into acount the
different types of associations as follows:

• Association - Returns a list of pairs (val, freq) with the most frequent local values
and respective frequencies. To select of the most frequent values, values are added
to the list by decreasing order of its frequency until the sum of the frequencies
reach a value equal or higher than 0.75.

• AssocOne - Returns a pair (val, freq), where val is the most frequent local value,
and freq is the frequency (percentage) with what occurs.

• AssocNum - Returns the average of local values.

The function receives an entity and (the name of) an association, and returns the
result as described above.

Exemplos:

>>> z . q u e r y l o c a l a s s o c (’ s o c r a t e s ’ , ’ p a i ’)
(’ s o f r o n i s c o ’ , 0 . 67)
>>> z . q u e r y l o c a l a s s o c (’ s o c r a t e s ’ , ’ pu l s a c ao ’)
56
>>> z . q u e r y l o c a l a s s o c (’homem ’ , ’ go s ta ’)
[(’ ca rne ’ , 0 . 4 0) , (’ p e i x e ’ , 0 . 4 0)]
>>>

5

16. In this type of semantic network, given the accumulation of declarations of multiple in-
terlocutors, inconsistencies may occur in the stored knowledge. When there is a conflict
between the values assigned to an association within an entity, it makes sense to take into
acount the inherited values. Develop a query assoc value () whereas given an entity, E, and
(the name of) an association, A, return the value, V , of this association in this entity,
according to the following case analysis:

• If all local declarations of A in E assign the same value, V , to the association, then
that value is returned, ignoring the values possibly declared for te predecessors

• Otherwise, return the value, V , which maximizes the following function:

F (E,A, V) = L(E,A,V)+H(E,A,V)
2

where L(E,A, V) is the percentage of declarations of V for A in the entity E, and
H(E,A, V) is the percentage of similar statements in the predecessor entities of E.

• If the association does not exist locally or cannot be inherited, the function returns
the most frequent value, that is, the value that maximizes H(E,A, V) or L(E,A, V),
respectively.

In this exercice, you should ignore the association types introduced in the previous exercice
(i.e. AssocOne and AssocNum).

III Bayesian Networks

1 Presentation of the initial module

The bayes net module, attached hereto, exports a class to represent Bayes networks (BayesNet).
A method is already implemented joint prob (conjunction) to calculate the joint probability. The
bn example has the ’alarm’ example of theoretical classes.

2 Exercises

1. Create a new Bayes network to represent the knowledge given in exercise III.11 of the
Theoretical-Practical Guide.

2. Develop a new method that, given a network variable and a Boolean value, calculate its
probability individual.

3. Using the network from the previous paragraph, calculate the probability of a user needing
help.

6

