46 lines
1.2 KiB
Python
46 lines
1.2 KiB
Python
# Exercicio 4.1
|
|
impar = lambda x: x % 2 != 0
|
|
|
|
# Exercicio 4.2
|
|
positivo = lambda x: x > 0
|
|
|
|
# Exercicio 4.3
|
|
comparar_modulo = lambda x, y: abs(x) < abs(y)
|
|
|
|
# Exercicio 4.4
|
|
cart2pol = lambda x, y: ((x**2 + y**2)**0.5, sum([((-1)**n * (y/x)**(2*n + 1)) / (2*n + 1) for n in range(100000)]) if x != 0 else 3.141592653589793/2)
|
|
|
|
# Exercicio 4.5
|
|
ex5 = lambda f, g, h: lambda x, y, z: h(f(x, y), g(y, z))
|
|
|
|
|
|
# Exercicio 4.6
|
|
def quantificador_universal(lista, f):
|
|
return [x for x in lista if not f(x)] == []
|
|
|
|
|
|
# Exercicio 4.7
|
|
def quantificador_existencial(lista, f):
|
|
return [x for x in lista if f(x)] != []
|
|
|
|
|
|
# Exercicio 4.8
|
|
def subconjunto(lista1, lista2):
|
|
return [x for x in lista1 if x in lista2] == lista1
|
|
|
|
|
|
# Exercicio 4.9
|
|
def menor_ordem(lista, f):
|
|
return [x for _ in range(len(lista)) for x in lista if all(f(x, y) for y in lista if x != y)][0]
|
|
|
|
|
|
# Exercicio 4.10
|
|
def menor_e_resto_ordem(lista, f):
|
|
m = menor_ordem(lista, f)
|
|
return m, [x for x in lista if x != m]
|
|
|
|
|
|
# Exercicio 5.2
|
|
def ordenar_seleccao(lista, ordem):
|
|
return lista if len(lista) <= 1 else ordenar_seleccao([x for x in lista[1:] if ordem(x, lista[0])], ordem) + [lista[0]] + ordenar_seleccao([x for x in lista[1:] if not ordem(x, lista[0])], ordem)
|