aad-assignment-1/aad_coin_miner_cuda_kernel.cu

186 lines
6.0 KiB
Plaintext

//
// Arquiteturas de Alto Desempenho 2025/2026
//
// DETI Coin Miner - CUDA kernel (optimized for mining)
//
#include "aad_sha1.h"
typedef unsigned int u32_t;
typedef unsigned char u08_t;
//
// Optimized CUDA kernel for DETI coin mining
// Each thread generates its own message based on thread coordinates and external parameters
//
extern "C" __global__ __launch_bounds__(RECOMENDED_CUDA_BLOCK_SIZE,1)
void mine_deti_coins_kernel(u32_t *coins_storage_area, u32_t param1, u32_t param2)
{
u32_t coin[14];
u32_t hash[5];
u32_t n, warp_id, lane_id;
// Get thread coordinates
n = (u32_t)threadIdx.x + (u32_t)blockDim.x * (u32_t)blockIdx.x;
warp_id = n >> 5u;
lane_id = n & 31u;
// Initialize coin template: "DETI coin 2 " + variable + "\n\x80"
// Use byte-swapped format to match host expectations (idx ^ 3)
coin[0] = 0x44455449u; // "DETI" with byte swap
coin[1] = 0x20636F69u; // " coi" with byte swap
coin[2] = 0x6E203220u; // "n 2 " with byte swap
// Variable part: encode thread ID and parameters
// This ensures each thread works on a different message
coin[3] = n; // Global thread ID
coin[4] = param1; // External parameter 1
coin[5] = param2; // External parameter 2
coin[6] = blockIdx.x; // Block index
coin[7] = threadIdx.x; // Thread index
coin[8] = warp_id; // Warp ID
coin[9] = lane_id; // Lane ID
coin[10] = n ^ param1; // XOR combination
coin[11] = n ^ param2; // XOR combination
coin[12] = (n * 0x9E3779B9u); // Hash-like mixing
// Last word: bytes 52-55
// Memory layout: coin[13]=0xAABBCCDD -> mem[52]=DD, [53]=CC, [54]=BB, [55]=AA
// With idx^3: bytes[52^3]=bytes[55]=AA, bytes[53^3]=bytes[54]=BB, bytes[54^3]=bytes[53]=CC, bytes[55^3]=bytes[52]=DD
// We want: bytes[54^3]=0x0A (newline), bytes[55^3]=0x80 (padding)
// So: bytes[53]=0x0A, bytes[52]=0x80 -> coin[13]=0x????0A80
coin[13] = ((n & 0xFFFFu) << 16) | 0x0A80u; // Top 2 bytes: variable, bottom: 0x80 0x0A
// Compute SHA1 hash
# define T u32_t
# define C(c) (c)
# define ROTATE(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
# define DATA(idx) coin[idx]
# define HASH(idx) hash[idx]
CUSTOM_SHA1_CODE();
# undef T
# undef C
# undef ROTATE
# undef DATA
# undef HASH
// Check if this is a valid DETI coin
if(hash[0] == 0xAAD20250u)
{
// Found a coin! Store it atomically
u32_t idx = atomicAdd(coins_storage_area, 14u);
// Make sure we don't write outside buffer
if(idx < 1024u - 14u)
{
// Store the coin data (only variable parts needed)
coins_storage_area[idx + 0] = coin[ 3];
coins_storage_area[idx + 1] = coin[ 4];
coins_storage_area[idx + 2] = coin[ 5];
coins_storage_area[idx + 3] = coin[ 6];
coins_storage_area[idx + 4] = coin[ 7];
coins_storage_area[idx + 5] = coin[ 8];
coins_storage_area[idx + 6] = coin[ 9];
coins_storage_area[idx + 7] = coin[10];
coins_storage_area[idx + 8] = coin[11];
coins_storage_area[idx + 9] = coin[12];
coins_storage_area[idx + 10] = coin[13];
// Store hash value for verification
coins_storage_area[idx + 11] = hash[1];
coins_storage_area[idx + 12] = hash[2];
coins_storage_area[idx + 13] = hash[3];
}
}
}
//
// Kernel that tries all possible values for one character position
//
extern "C" __global__ __launch_bounds__(RECOMENDED_CUDA_BLOCK_SIZE,1)
void mine_deti_coins_scan_kernel(u32_t *coins_storage_area, u32_t param1, u32_t param2, int scan_position)
{
u32_t coin[14];
u32_t hash[5];
u32_t n;
n = (u32_t)threadIdx.x + (u32_t)blockDim.x * (u32_t)blockIdx.x;
// Initialize coin template (with byte swap for idx ^ 3 convention)
coin[0] = 0x44455449u; // "DETI" with byte swap
coin[1] = 0x20636F69u; // " coi" with byte swap
coin[2] = 0x6E203220u; // "n 2 " with byte swap
// Variable part
coin[3] = param1;
coin[4] = param2;
coin[5] = n >> 8; // High bits of n
coin[6] = blockIdx.x;
coin[7] = threadIdx.x;
coin[8] = param1 ^ param2;
coin[9] = n & 0xFFu; // Low 8 bits of n
coin[10] = param1 + n;
coin[11] = param2 - n;
coin[12] = (n * 0x9E3779B9u);
coin[13] = ((n & 0xFFFFu) << 16) | 0x0A80u; // Top 2 bytes: variable, bottom: 0x80 0x0A
// Try all possible values for the scan position (0-255)
// This allows exploring a full byte range in a single kernel launch
for(u32_t val = 0; val < 256u; val++)
{
// Insert the test value at the scan position
u32_t word_idx = scan_position / 4;
u32_t byte_pos = scan_position % 4;
u32_t shift = byte_pos * 8;
if(word_idx >= 3 && word_idx < 13)
{
u32_t mask = ~(0xFFu << shift);
coin[word_idx] = (coin[word_idx] & mask) | (val << shift);
// Make sure we don't use newline in the middle
u08_t *bytes = (u08_t *)coin;
if(scan_position < 54 && bytes[scan_position ^ 3] == 0x0A)
continue;
}
// Compute SHA1 hash
# define T u32_t
# define C(c) (c)
# define ROTATE(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
# define DATA(idx) coin[idx]
# define HASH(idx) hash[idx]
CUSTOM_SHA1_CODE();
# undef T
# undef C
# undef ROTATE
# undef DATA
# undef HASH
// Check if valid coin
if(hash[0] == 0xAAD20250u)
{
u32_t idx = atomicAdd(coins_storage_area, 14u);
if(idx < 1024u - 14u)
{
coins_storage_area[idx + 0] = coin[ 3];
coins_storage_area[idx + 1] = coin[ 4];
coins_storage_area[idx + 2] = coin[ 5];
coins_storage_area[idx + 3] = coin[ 6];
coins_storage_area[idx + 4] = coin[ 7];
coins_storage_area[idx + 5] = coin[ 8];
coins_storage_area[idx + 6] = coin[ 9];
coins_storage_area[idx + 7] = coin[10];
coins_storage_area[idx + 8] = coin[11];
coins_storage_area[idx + 9] = coin[12];
coins_storage_area[idx + 10] = coin[13];
coins_storage_area[idx + 11] = hash[1];
coins_storage_area[idx + 12] = hash[2];
coins_storage_area[idx + 13] = hash[3];
}
}
}
}