// // Arquiteturas de Alto Desempenho 2025/2026 // // DETI Coin Miner - OpenCL kernel // // Rotate left for SHA-1 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) // SHA-1 macros #define SHA1_F1(x,y,z) ((x & y) | (~x & z)) #define SHA1_K1 0x5A827999u #define SHA1_F2(x,y,z) (x ^ y ^ z) #define SHA1_K2 0x6ED9EBA1u #define SHA1_F3(x,y,z) ((x & y) | (x & z) | (y & z)) #define SHA1_K3 0x8F1BBCDCu #define SHA1_F4(x,y,z) (x ^ y ^ z) #define SHA1_K4 0xCA62C1D6u // // SHA-1 implementation matching the template from aad_sha1.h // void sha1_compute(__private uint *coin, __private uint *hash) { uint a, b, c, d, e, w[16]; // Initial hash values a = 0x67452301u; b = 0xEFCDAB89u; c = 0x98BADCFEu; d = 0x10325476u; e = 0xC3D2E1F0u; // Load message schedule (first 14 words from coin, then 0, then length) for(int i = 0; i < 14; i++) w[i] = coin[i]; w[14] = 0; w[15] = 440; // 55 bytes * 8 bits // SHA-1 compression function - 80 rounds uint tmp; // Rounds 0-15 #define ROUND1(t) \ tmp = ROTATE_LEFT(a, 5) + SHA1_F1(b,c,d) + e + w[t] + SHA1_K1; \ e = d; d = c; c = ROTATE_LEFT(b, 30); b = a; a = tmp; ROUND1(0); ROUND1(1); ROUND1(2); ROUND1(3); ROUND1(4); ROUND1(5); ROUND1(6); ROUND1(7); ROUND1(8); ROUND1(9); ROUND1(10); ROUND1(11); ROUND1(12); ROUND1(13); ROUND1(14); ROUND1(15); #undef ROUND1 // Rounds 16-79 with message schedule #define ROUND(F, K, t) \ tmp = w[(t-3) & 15] ^ w[(t-8) & 15] ^ w[(t-14) & 15] ^ w[(t-16) & 15]; \ w[t & 15] = ROTATE_LEFT(tmp, 1); \ tmp = ROTATE_LEFT(a, 5) + F(b,c,d) + e + w[t & 15] + K; \ e = d; d = c; c = ROTATE_LEFT(b, 30); b = a; a = tmp; ROUND(SHA1_F1, SHA1_K1, 16); ROUND(SHA1_F1, SHA1_K1, 17); ROUND(SHA1_F1, SHA1_K1, 18); ROUND(SHA1_F1, SHA1_K1, 19); ROUND(SHA1_F2, SHA1_K2, 20); ROUND(SHA1_F2, SHA1_K2, 21); ROUND(SHA1_F2, SHA1_K2, 22); ROUND(SHA1_F2, SHA1_K2, 23); ROUND(SHA1_F2, SHA1_K2, 24); ROUND(SHA1_F2, SHA1_K2, 25); ROUND(SHA1_F2, SHA1_K2, 26); ROUND(SHA1_F2, SHA1_K2, 27); ROUND(SHA1_F2, SHA1_K2, 28); ROUND(SHA1_F2, SHA1_K2, 29); ROUND(SHA1_F2, SHA1_K2, 30); ROUND(SHA1_F2, SHA1_K2, 31); ROUND(SHA1_F2, SHA1_K2, 32); ROUND(SHA1_F2, SHA1_K2, 33); ROUND(SHA1_F2, SHA1_K2, 34); ROUND(SHA1_F2, SHA1_K2, 35); ROUND(SHA1_F2, SHA1_K2, 36); ROUND(SHA1_F2, SHA1_K2, 37); ROUND(SHA1_F2, SHA1_K2, 38); ROUND(SHA1_F2, SHA1_K2, 39); ROUND(SHA1_F3, SHA1_K3, 40); ROUND(SHA1_F3, SHA1_K3, 41); ROUND(SHA1_F3, SHA1_K3, 42); ROUND(SHA1_F3, SHA1_K3, 43); ROUND(SHA1_F3, SHA1_K3, 44); ROUND(SHA1_F3, SHA1_K3, 45); ROUND(SHA1_F3, SHA1_K3, 46); ROUND(SHA1_F3, SHA1_K3, 47); ROUND(SHA1_F3, SHA1_K3, 48); ROUND(SHA1_F3, SHA1_K3, 49); ROUND(SHA1_F3, SHA1_K3, 50); ROUND(SHA1_F3, SHA1_K3, 51); ROUND(SHA1_F3, SHA1_K3, 52); ROUND(SHA1_F3, SHA1_K3, 53); ROUND(SHA1_F3, SHA1_K3, 54); ROUND(SHA1_F3, SHA1_K3, 55); ROUND(SHA1_F3, SHA1_K3, 56); ROUND(SHA1_F3, SHA1_K3, 57); ROUND(SHA1_F3, SHA1_K3, 58); ROUND(SHA1_F3, SHA1_K3, 59); ROUND(SHA1_F4, SHA1_K4, 60); ROUND(SHA1_F4, SHA1_K4, 61); ROUND(SHA1_F4, SHA1_K4, 62); ROUND(SHA1_F4, SHA1_K4, 63); ROUND(SHA1_F4, SHA1_K4, 64); ROUND(SHA1_F4, SHA1_K4, 65); ROUND(SHA1_F4, SHA1_K4, 66); ROUND(SHA1_F4, SHA1_K4, 67); ROUND(SHA1_F4, SHA1_K4, 68); ROUND(SHA1_F4, SHA1_K4, 69); ROUND(SHA1_F4, SHA1_K4, 70); ROUND(SHA1_F4, SHA1_K4, 71); ROUND(SHA1_F4, SHA1_K4, 72); ROUND(SHA1_F4, SHA1_K4, 73); ROUND(SHA1_F4, SHA1_K4, 74); ROUND(SHA1_F4, SHA1_K4, 75); ROUND(SHA1_F4, SHA1_K4, 76); ROUND(SHA1_F4, SHA1_K4, 77); ROUND(SHA1_F4, SHA1_K4, 78); ROUND(SHA1_F4, SHA1_K4, 79); #undef ROUND // Add to initial values hash[0] = a + 0x67452301u; hash[1] = b + 0xEFCDAB89u; hash[2] = c + 0x98BADCFEu; hash[3] = d + 0x10325476u; hash[4] = e + 0xC3D2E1F0u; } // // Basic mining kernel - each work item tries one coin // __kernel void mine_deti_coins_kernel(__global uint *storage, uint param1, uint param2) { uint gid = get_global_id(0); uint coin[14]; uint hash[5]; // Zero initialize for(int i = 0; i < 14; i++) coin[i] = 0; // Access as bytes with XOR 3 for endianness (little-endian word, big-endian bytes) __private uchar *bytes = (__private uchar *)coin; // Fixed prefix: "DETI coin 2 " bytes[0x0 ^ 3] = 'D'; bytes[0x1 ^ 3] = 'E'; bytes[0x2 ^ 3] = 'T'; bytes[0x3 ^ 3] = 'I'; bytes[0x4 ^ 3] = ' '; bytes[0x5 ^ 3] = 'c'; bytes[0x6 ^ 3] = 'o'; bytes[0x7 ^ 3] = 'i'; bytes[0x8 ^ 3] = 'n'; bytes[0x9 ^ 3] = ' '; bytes[0xa ^ 3] = '2'; bytes[0xb ^ 3] = ' '; // Fixed suffix: newline + padding bytes[0x36 ^ 3] = '\n'; bytes[0x37 ^ 3] = 0x80; // Variable content (42 bytes from position 12 to 53) // Generate unique content for each thread uint seed = param1 + gid * 0x9E3779B9u; uint seed2 = param2 ^ (gid * 0x61C88647u); for(int i = 12; i < 54; i++) { // LCG + xorshift mixer seed = seed * 1664525u + 1013904223u; seed2 ^= seed2 << 13; seed2 ^= seed2 >> 17; seed2 ^= seed2 << 5; uchar val = 32 + ((seed ^ seed2) % 95); // Skip newline character if(val == '\n') val = ' '; // Ensure we stay in printable range if(val >= 127) val = 126; bytes[i ^ 3] = val; } // Compute SHA-1 sha1_compute(coin, hash); // Check for valid DETI coin v2 (hash starts with 0xAAD20250) if(hash[0] == 0xAAD20250u) { // Atomically reserve space and store the coin uint idx = atomic_add(&storage[0], 14u); if(idx + 14 <= 1024) { // Store all 14 words of the coin for(int i = 0; i < 14; i++) storage[idx + i] = coin[i]; } } } // // Scan kernel - each work item tries 256 variations // __kernel void mine_deti_coins_scan_kernel(__global uint *storage, uint param1, uint param2, int scan_pos) { uint gid = get_global_id(0); uint coin[14]; uint hash[5]; // Initialize coin for(int i = 0; i < 14; i++) coin[i] = 0; __private uchar *bytes = (__private uchar *)coin; // Fixed parts bytes[0x0 ^ 3] = 'D'; bytes[0x1 ^ 3] = 'E'; bytes[0x2 ^ 3] = 'T'; bytes[0x3 ^ 3] = 'I'; bytes[0x4 ^ 3] = ' '; bytes[0x5 ^ 3] = 'c'; bytes[0x6 ^ 3] = 'o'; bytes[0x7 ^ 3] = 'i'; bytes[0x8 ^ 3] = 'n'; bytes[0x9 ^ 3] = ' '; bytes[0xa ^ 3] = '2'; bytes[0xb ^ 3] = ' '; bytes[0x36 ^ 3] = '\n'; bytes[0x37 ^ 3] = 0x80; // Generate base content unique to this thread uint seed = param1 + gid * 0x9E3779B9u; uint seed2 = param2 ^ (gid * 0x61C88647u); for(int i = 12; i < 54; i++) { seed = seed * 1664525u + 1013904223u; seed2 ^= seed2 << 13; seed2 ^= seed2 >> 17; seed2 ^= seed2 << 5; uchar val = 32 + ((seed ^ seed2) % 95); if(val == '\n') val = ' '; if(val >= 127) val = 126; bytes[i ^ 3] = val; } // Validate scan_pos if(scan_pos < 12 || scan_pos >= 54) scan_pos = 12; // Scan through all printable ASCII values at scan_pos for(uint c = 32; c < 127; c++) { if(c == '\n') continue; // Skip newline bytes[scan_pos ^ 3] = (uchar)c; sha1_compute(coin, hash); if(hash[0] == 0xAAD20250u) { uint idx = atomic_add(&storage[0], 14u); if(idx + 14 <= 1024) { for(int i = 0; i < 14; i++) storage[idx + i] = coin[i]; } } } }