#include "autoware_v2x/cpm_application.hpp" #include "autoware_v2x/positioning.hpp" #include "autoware_v2x/security.hpp" #include "autoware_v2x/link_layer.hpp" #include "autoware_v2x/v2x_node.hpp" #include "tf2/LinearMath/Quaternion.h" #include "tf2/LinearMath/Matrix3x3.h" #include "rclcpp/rclcpp.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include using namespace vanetza; using namespace vanetza::facilities; using namespace std::chrono; namespace v2x { CpmApplication::CpmApplication(V2XNode *node, Runtime &rt, bool is_sender) : node_(node), runtime_(rt), ego_(), generationDeltaTime_(0), updating_objects_stack_(false), sending_(false), is_sender_(is_sender), reflect_packet_(false) { RCLCPP_INFO(node_->get_logger(), "CpmApplication started. is_sender: %d", is_sender_); set_interval(milliseconds(100)); } void CpmApplication::set_interval(Clock::duration interval) { cpm_interval_ = interval; runtime_.cancel(this); schedule_timer(); } void CpmApplication::schedule_timer() { runtime_.schedule(cpm_interval_, std::bind(&CpmApplication::on_timer, this, std::placeholders::_1), this); } void CpmApplication::on_timer(Clock::time_point) { schedule_timer(); send(); } CpmApplication::PortType CpmApplication::port() { return btp::ports::CPM; } void CpmApplication::indicate(const DataIndication &indication, UpPacketPtr packet) { asn1::PacketVisitor visitor; std::shared_ptr cpm = boost::apply_visitor(visitor, *packet); if (cpm) { // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] Received decodable CPM content"); rclcpp::Time current_time = node_->now(); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] T_receive_r1 %ld", current_time.nanoseconds()); asn1::Cpm message = *cpm; ItsPduHeader_t &header = message->header; // Calculate GDT and get GDT from CPM and calculate the "Age of CPM" GenerationDeltaTime_t gdt_cpm = message->cpm.generationDeltaTime; const auto time_now = duration_cast (runtime_.now().time_since_epoch()); uint16_t gdt = time_now.count(); int gdt_diff = (65536 + (gdt - gdt_cpm) % 65536) % 65536; // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] GDT_CPM: %ld", gdt_cpm); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] GDT: %u", gdt); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] T_R1R2: %d", gdt_diff); CpmManagementContainer_t &management = message->cpm.cpmParameters.managementContainer; double lat = management.referencePosition.latitude / 1.0e7; double lon = management.referencePosition.longitude / 1.0e7; int zone; int grid_num_x = 4; int grid_num_y = 39; int grid_size = 100000; bool northp; double x, y; GeographicLib::UTMUPS::Forward(lat, lon, zone, northp, x, y); double x_mgrs = x - grid_num_x * grid_size; double y_mgrs = y - grid_num_y * grid_size; OriginatingVehicleContainer_t &ovc = message->cpm.cpmParameters.stationDataContainer->choice.originatingVehicleContainer; // Calculate ego-vehicle orientation (radians) from heading (degree). // orientation: True-East, counter-clockwise angle. (0.1 degree accuracy) int heading = ovc.heading.headingValue; double orientation = (90.0 - (double) heading / 10.0) * M_PI / 180.0; if (orientation < 0.0) orientation += (2.0 * M_PI); // double orientation = heading / 10.0; RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] heading: %d", heading); RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] orientation: %f", orientation); // Get PerceivedObjects receivedObjectsStack.clear(); PerceivedObjectContainer_t *&poc = message->cpm.cpmParameters.perceivedObjectContainer; if (poc != NULL) { for (int i = 0; i < poc->list.count; ++i) { // RCLCPP_INFO(node_->get_logger(), "[INDICATE] Object: #%d", poc->list.array[i]->objectID); CpmApplication::Object object; double x1 = poc->list.array[i]->xDistance.value; double y1 = poc->list.array[i]->yDistance.value; x1 = x1 / 100.0; y1 = y1 / 100.0; object.position_x = x_mgrs + (cos(orientation) * x1 - sin(orientation) * y1); object.position_y = y_mgrs + (sin(orientation) * x1 + cos(orientation) * y1); object.shape_x = poc->list.array[i]->planarObjectDimension2->value; object.shape_y = poc->list.array[i]->planarObjectDimension1->value; object.shape_z = poc->list.array[i]->verticalObjectDimension->value; object.yawAngle = poc->list.array[i]->yawAngle->value; double yaw_radian = (M_PI * object.yawAngle / 10.0) / 180.0; tf2::Quaternion quat; quat.setRPY(0, 0, yaw_radian); object.orientation_x = quat.x(); object.orientation_y = quat.y(); object.orientation_z = quat.z(); object.orientation_w = quat.w(); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] object.quat: %f, %f, %f, %f", object.orientation_x, object.orientation_y, object.orientation_z, object.orientation_w); receivedObjectsStack.push_back(object); } node_->publishObjects(&receivedObjectsStack); } else { RCLCPP_INFO(node_->get_logger(), "[INDICATE] Empty POC"); } if (reflect_packet_) { Application::DownPacketPtr packet{new DownPacket()}; std::unique_ptr payload{new geonet::DownPacket()}; payload->layer(OsiLayer::Application) = std::move(message); Application::DataRequest request; request.its_aid = aid::CP; request.transport_type = geonet::TransportType::SHB; request.communication_profile = geonet::CommunicationProfile::ITS_G5; Application::DataConfirm confirm = Application::request(request, std::move(payload), node_); if (!confirm.accepted()) { throw std::runtime_error("[CpmApplication::indicate] Packet reflection failed"); } } } else { RCLCPP_INFO(node_->get_logger(), "[INDICATE] Received broken content"); } } void CpmApplication::updateMGRS(double *x, double *y) { ego_.mgrs_x = *x; ego_.mgrs_y = *y; // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::updateMGRS] ego-vehicle.position: %.10f, %.10f", ego_.mgrs_x, ego_.mgrs_y); } void CpmApplication::updateRP(double *lat, double *lon, double *altitude) { ego_.latitude = *lat; ego_.longitude = *lon; ego_.altitude = *altitude; } void CpmApplication::updateGenerationDeltaTime(int *gdt, long long *gdt_timestamp) { generationDeltaTime_ = *gdt; gdt_timestamp_ = *gdt_timestamp; // ETSI-epoch milliseconds timestamp } void CpmApplication::updateHeading(double *yaw) { ego_.heading = *yaw; } void CpmApplication::updateObjectsStack(const autoware_perception_msgs::msg::DynamicObjectArray::ConstSharedPtr msg) { updating_objects_stack_ = true; if (sending_) { RCLCPP_INFO(node_->get_logger(), "updateObjectsStack Skipped..."); return; } else { objectsStack.clear(); } if (msg->objects.size() > 0) { int i = 0; for (auto obj : msg->objects) { CpmApplication::Object object; object.objectID = i; object.timestamp = msg->header.stamp; object.position_x = obj.state.pose_covariance.pose.position.x; // MGRS object.position_y = obj.state.pose_covariance.pose.position.y; object.position_z = obj.state.pose_covariance.pose.position.z; object.orientation_x = obj.state.pose_covariance.pose.orientation.x; object.orientation_y = obj.state.pose_covariance.pose.orientation.y; object.orientation_z = obj.state.pose_covariance.pose.orientation.z; object.orientation_w = obj.state.pose_covariance.pose.orientation.w; object.shape_x = std::lround(obj.shape.dimensions.x * 10.0); object.shape_y = std::lround(obj.shape.dimensions.y * 10.0); object.shape_z = std::lround(obj.shape.dimensions.z * 10.0); // xDistance, yDistance: Int (-132768..132767), 0.01 meter accuracy object.xDistance = std::lround(( (object.position_x - ego_.mgrs_x) * cos(-ego_.heading) - (object.position_y - ego_.mgrs_y) * sin(-ego_.heading) ) * 100.0); object.yDistance = std::lround(( (object.position_x - ego_.mgrs_x) * sin(-ego_.heading) + (object.position_y - ego_.mgrs_y) * cos(-ego_.heading) ) * 100.0); if (object.xDistance < -132768 || object.xDistance > 132767) { continue; } if (object.yDistance < -132768 || object.yDistance > 132767) { continue; } object.xSpeed = 0; object.ySpeed = 0; // Calculate orientation of detected object tf2::Quaternion quat(object.orientation_x, object.orientation_y, object.orientation_z, object.orientation_w); tf2::Matrix3x3 matrix(quat); double roll, pitch, yaw; matrix.getRPY(roll, pitch, yaw); if (yaw < 0) { object.yawAngle = std::lround(((yaw + 2*M_PI) * 180.0 / M_PI) * 10.0); // 0 - 3600 } else { object.yawAngle = std::lround((yaw * 180.0 / M_PI) * 10.0); // 0 - 3600 } // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::updateObjectsStack] object.yawAngle: %d", object.yawAngle); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::updateObjectsStack] object.quat: %f, %f, %f, %f", object.orientation_x, object.orientation_y, object.orientation_z, object.orientation_w); long long msg_timestamp_sec = msg->header.stamp.sec; long long msg_timestamp_nsec = msg->header.stamp.nanosec; msg_timestamp_sec -= 1072915200; // convert to etsi-epoch long long msg_timestamp_msec = msg_timestamp_sec * 1000 + msg_timestamp_nsec / 1000000; // long long timestamp = msg->header.stamp.sec * 1e9 + msg->header.stamp.nanosec; object.timeOfMeasurement = gdt_timestamp_ - msg_timestamp_msec; // RCLCPP_INFO(node_->get_logger(), "[updateObjectsStack] %ld %ld %d", gdt_timestamp_, timestamp, object.timeOfMeasurement); if (object.timeOfMeasurement < -1500 || object.timeOfMeasurement > 1500) { RCLCPP_INFO(node_->get_logger(), "[updateObjectsStack] timeOfMeasurement out of bounds: %d", object.timeOfMeasurement); continue; } objectsStack.push_back(object); ++i; // RCLCPP_INFO(node_->get_logger(), "Added to stack: #%d (%d, %d) (%d, %d) (%d, %d, %d) (%f: %d)", object.objectID, object.xDistance, object.yDistance, object.xSpeed, object.ySpeed, object.shape_x, object.shape_y, object.shape_z, yaw, object.yawAngle); } } // RCLCPP_INFO(node_->get_logger(), "ObjectsStack: %d objects", objectsStack.size()); rclcpp::Time current_time = node_->now(); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::updateObjectsStack] [measure] T_objstack_updated %ld", current_time.nanoseconds()); updating_objects_stack_ = false; } void CpmApplication::send() { if (is_sender_) { sending_ = true; // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] Sending CPM..."); vanetza::asn1::Cpm message; // ITS PDU Header ItsPduHeader_t &header = message->header; header.protocolVersion = 1; header.messageID = 14; header.stationID = 1; CollectivePerceptionMessage_t &cpm = message->cpm; // Set GenerationDeltaTime cpm.generationDeltaTime = generationDeltaTime_ * GenerationDeltaTime_oneMilliSec; CpmManagementContainer_t &management = cpm.cpmParameters.managementContainer; management.stationType = StationType_passengerCar; management.referencePosition.latitude = ego_.latitude * 1e7; management.referencePosition.longitude = ego_.longitude * 1e7; cpm.cpmParameters.numberOfPerceivedObjects = objectsStack.size(); StationDataContainer_t *&sdc = cpm.cpmParameters.stationDataContainer; sdc = vanetza::asn1::allocate(); sdc->present = StationDataContainer_PR_originatingVehicleContainer; OriginatingVehicleContainer_t &ovc = sdc->choice.originatingVehicleContainer; ovc.speed.speedValue = 0; ovc.speed.speedConfidence = 1; // Calculate headingValue of ego-vehicle. // Convert ego-vehicle yaw to True-North clockwise angle (heading). 0.1 degree accuracy. int heading = std::lround(((-ego_.heading * 180.0 / M_PI) + 90.0) * 10.0); if (heading < 0) heading += 3600; ovc.heading.headingValue = heading; ovc.heading.headingConfidence = 1; if (objectsStack.size() > 0) { PerceivedObjectContainer_t *&poc = cpm.cpmParameters.perceivedObjectContainer; poc = vanetza::asn1::allocate(); for (CpmApplication::Object object : objectsStack) { PerceivedObject *pObj = vanetza::asn1::allocate(); pObj->objectID = object.objectID; pObj->timeOfMeasurement = object.timeOfMeasurement; pObj->xDistance.value = object.xDistance; pObj->xDistance.confidence = 1; pObj->yDistance.value = object.yDistance; pObj->yDistance.confidence = 1; pObj->xSpeed.value = object.xSpeed; pObj->xSpeed.confidence = 1; pObj->ySpeed.value = object.ySpeed; pObj->ySpeed.confidence = 1; pObj->planarObjectDimension1 = vanetza::asn1::allocate(); pObj->planarObjectDimension2 = vanetza::asn1::allocate(); pObj->verticalObjectDimension = vanetza::asn1::allocate(); (*(pObj->planarObjectDimension1)).value = object.shape_y; (*(pObj->planarObjectDimension1)).confidence = 1; (*(pObj->planarObjectDimension2)).value = object.shape_x; (*(pObj->planarObjectDimension2)).confidence = 1; (*(pObj->verticalObjectDimension)).value = object.shape_z; (*(pObj->verticalObjectDimension)).confidence = 1; pObj->yawAngle = vanetza::asn1::allocate(); (*(pObj->yawAngle)).value = object.yawAngle; (*(pObj->yawAngle)).confidence = 1; // RCLCPP_INFO(node_->get_logger(), "[SEND] Added: #%d (%d, %d) (%d, %d) (%d, %d, %d) %d", object.objectID, object.xDistance, object.yDistance, object.xSpeed, object.ySpeed, object.shape_y, object.shape_x, object.shape_z, object.yawAngle); ASN_SEQUENCE_ADD(poc, pObj); } } else { cpm.cpmParameters.perceivedObjectContainer = NULL; RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] Empty POC"); } Application::DownPacketPtr packet{new DownPacket()}; std::unique_ptr payload{new geonet::DownPacket()}; payload->layer(OsiLayer::Application) = std::move(message); Application::DataRequest request; request.its_aid = aid::CP; request.transport_type = geonet::TransportType::SHB; request.communication_profile = geonet::CommunicationProfile::ITS_G5; Application::DataConfirm confirm = Application::request(request, std::move(payload), node_); if (!confirm.accepted()) { throw std::runtime_error("[CpmApplication::send] CPM application data request failed"); } sending_ = false; rclcpp::Time current_time = node_->now(); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] [measure] T_depart_r1 %ld", current_time.nanoseconds()); } } }