#include "autoware_v2x/cam_application.hpp" #include "autoware_v2x/positioning.hpp" #include "autoware_v2x/security.hpp" #include "autoware_v2x/link_layer.hpp" #include "autoware_v2x/v2x_node.hpp" #include "tf2/LinearMath/Quaternion.h" #include "tf2/LinearMath/Matrix3x3.h" #include "rclcpp/rclcpp.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include using namespace vanetza; using namespace std::chrono; namespace v2x { CamApplication::CamApplication(V2XNode * node, Runtime & rt, bool is_sender) : node_(node), runtime_(rt), vehicleDimensions_(), ego_(), velocityReport_(), gearReport_(), steeringReport_(), generationTime_(0), updating_velocity_report_(false), updating_gear_report_(false), updating_steering_report_(false), sending_(false), is_sender_(is_sender), reflect_packet_(false), objectConfidenceThreshold_(0.0), include_all_persons_and_animals_(false), cam_num_(0), received_cam_num_(0), use_dynamic_generation_rules_(false) { RCLCPP_INFO(node_->get_logger(), "CamApplication started. is_sender: %d", is_sender_); set_interval(milliseconds(100)); //createTables(); } void CamApplication::set_interval(Clock::duration interval) { cam_interval_ = interval; runtime_.cancel(this); schedule_timer(); } void CamApplication::schedule_timer() { runtime_.schedule(cam_interval_, std::bind(&CamApplication::on_timer, this, std::placeholders::_1)); } void CamApplication::on_timer(vanetza::Clock::time_point) { schedule_timer(); send(); } CamApplication::PortType CamApplication::port() { return btp::ports::CAM; } void CamApplication::indicate(const Application::DataIndication &, Application::UpPacketPtr) { // TODO: implement } void CamApplication::updateMGRS(double *x, double *y) { ego_.mgrs_x = *x; ego_.mgrs_y = *y; } void CamApplication::updateRP(double *lat, double *lon, double *altitude) { ego_.latitude = *lat; ego_.longitude = *lon; ego_.altitude = *altitude; } void CamApplication::updateGenerationTime(int *gdt, long *gdt_timestamp) { generationTime_ = *gdt; gdt_timestamp_ = *gdt_timestamp; // ETSI-epoch milliseconds timestamp } void CamApplication::updateHeading(double *yaw) { ego_.heading = *yaw; } void CamApplication::getVehicleDimensions(const autoware_adapi_v1_msgs::msg::VehicleDimensions msg) { vehicleDimensions_.wheel_radius = msg.wheel_radius; vehicleDimensions_.wheel_width = msg.wheel_width; vehicleDimensions_.wheel_base = msg.wheel_base; vehicleDimensions_.wheel_tread = msg.wheel_tread; vehicleDimensions_.front_overhang = msg.front_overhang; vehicleDimensions_.rear_overhang = msg.rear_overhang; vehicleDimensions_.left_overhang = msg.left_overhang; vehicleDimensions_.right_overhang = msg.right_overhang; vehicleDimensions_.height = msg.height; } void CamApplication::updateVelocityReport(const autoware_auto_vehicle_msgs::msg::VelocityReport::ConstSharedPtr msg) { if (updating_velocity_report_) { RCLCPP_WARN(node_->get_logger(), "[CamApplication::updateVelocityReport] already updating velocity report"); return; } updating_velocity_report_ = true; rclcpp::Time msg_stamp(msg->header.stamp.sec, msg->header.stamp.nanosec); float dt = (msg_stamp - velocityReport_.stamp).seconds(); if (dt == 0) { RCLCPP_WARN(node_->get_logger(), "[CamApplication::updateVelocityReport] deltaTime is 0"); return; } float longitudinal_acceleration = (msg->longitudinal_velocity - velocityReport_.longitudinal_velocity) / dt; velocityReport_.stamp = msg->header.stamp; velocityReport_.heading_rate = msg->heading_rate; velocityReport_.lateral_velocity = msg->lateral_velocity; velocityReport_.longitudinal_velocity = msg->longitudinal_velocity; velocityReport_.longitudinal_acceleration = longitudinal_acceleration; } void CamApplication::updateGearReport(const autoware_auto_vehicle_msgs::msg::GearReport::ConstSharedPtr msg) { if (updating_gear_report_) { RCLCPP_WARN(node_->get_logger(), "[CamApplication::updateGearReport] already updating gear report"); return; } updating_gear_report_ = true; gearReport_.stamp = msg->stamp; gearReport_.report = msg->report; } void CamApplication::updateSteeringReport(const autoware_auto_vehicle_msgs::msg::SteeringReport::ConstSharedPtr msg) { if (updating_steering_report_) { RCLCPP_WARN(node_->get_logger(), "[CamApplication::updateSteeringReport] already updating steering report"); return; } updating_steering_report_ = true; steeringReport_.stamp = msg->stamp; steeringReport_.steering_tire_angle = msg->steering_tire_angle; } void CamApplication::send() { if (!is_sender_) return; if (sending_) { RCLCPP_WARN(node_->get_logger(), "[CamApplication::send] already sending"); return; } sending_ = true; RCLCPP_INFO(node_->get_logger(), "[CamApplication::send] cam_num: %d", cam_num_); vanetza::asn1::Cam message; ItsPduHeader_t &header = message->header; header.protocolVersion = 2; header.messageID = ItsPduHeader__messageID_cam; header.stationID = cam_num_; CoopAwareness_t &cam = message->cam; cam.generationDeltaTime = std::chrono::duration_cast(cam_interval_).count(); BasicContainer_t &basic_container = cam.camParameters.basicContainer; basic_container.stationType = StationType_passengerCar; float latitude = ego_.latitude * 1e7; float longitude = ego_.longitude * 1e7; float altitude = ego_.altitude * 100; basic_container.referencePosition.latitude = latitude >= -900000000 && latitude <= 900000000 ? latitude : Latitude_unavailable; basic_container.referencePosition.longitude = longitude >= -1800000000 && longitude <= 1800000000 ? longitude : Longitude_unavailable; basic_container.referencePosition.altitude.altitudeValue = altitude > -100000 && altitude < 800000 ? altitude : AltitudeValue_unavailable; // UNAVAILABLE VALUES FOR TESTING basic_container.referencePosition.positionConfidenceEllipse.semiMajorConfidence = SemiAxisLength_unavailable; basic_container.referencePosition.positionConfidenceEllipse.semiMinorConfidence = SemiAxisLength_unavailable; basic_container.referencePosition.positionConfidenceEllipse.semiMajorOrientation = HeadingValue_unavailable; // ------------------------------ BasicVehicleContainerHighFrequency_t &bvc = cam.camParameters.highFrequencyContainer.choice.basicVehicleContainerHighFrequency; cam.camParameters.highFrequencyContainer.present = HighFrequencyContainer_PR_basicVehicleContainerHighFrequency; int heading = std::lround(((-ego_.heading * 180.0 / M_PI) + 90.0) * 10.0); if (heading < 0) heading += 3600; bvc.heading.headingValue = heading; float heading_rate = velocityReport_.heading_rate; float lateral_velocity = velocityReport_.lateral_velocity; float longitudinal_velocity = velocityReport_.longitudinal_velocity; float longitudinal_acceleration = std::lround(velocityReport_.longitudinal_acceleration * 100); uint8_t gearStatus = gearReport_.report; float steering_tire_angle = steeringReport_.steering_tire_angle; float speed = std::lround(std::sqrt(std::pow(longitudinal_velocity, 2) + std::pow(lateral_velocity, 2)) * 100); bvc.speed.speedValue = speed >= 0 && speed < 16382 ? speed : SpeedValue_unavailable; if ((gearStatus >= 2 && gearStatus <= 19) || gearStatus == 21 || gearStatus == 22) bvc.driveDirection = DriveDirection_forward; else if (gearStatus == 20 || gearStatus == 21) bvc.driveDirection = DriveDirection_backward; else bvc.driveDirection = DriveDirection_unavailable; float vehicleLength = std::lround(vehicleDimensions_.front_overhang + vehicleDimensions_.wheel_base + vehicleDimensions_.rear_overhang * 100); bvc.vehicleLength.vehicleLengthValue = vehicleLength >= 0 && vehicleLength <= 1022 ? vehicleLength : VehicleLengthValue_unavailable; float vehicleWidth = std::lround(vehicleDimensions_.left_overhang + vehicleDimensions_.wheel_tread + vehicleDimensions_.right_overhang * 100); bvc.vehicleWidth = vehicleWidth >= 0 && vehicleWidth <= 61 ? vehicleWidth : VehicleWidth_unavailable; bvc.longitudinalAcceleration.longitudinalAccelerationValue = longitudinal_acceleration >= -160 && longitudinal_acceleration <= 160 ? longitudinal_acceleration : LongitudinalAccelerationValue_unavailable; long curvature = longitudinal_velocity != 0 ? std::abs(std::lround(lateral_velocity / std::pow(longitudinal_velocity, 2) * 100)) * (steering_tire_angle < 0 ? -1 : 1) : std::numeric_limits::infinity(); bvc.curvature.curvatureValue = curvature >= -1023 && curvature <= 1022 ? curvature : CurvatureValue_unavailable; bvc.curvatureCalculationMode = CurvatureCalculationMode_yawRateNotUsed; long heading_rate_deg = std::abs(std::lround(heading_rate * (180.0 / M_PI))) * (steering_tire_angle < 0 ? -1 : 1); bvc.yawRate.yawRateValue = heading_rate_deg >= -32766 && heading_rate_deg <= 32766 ? heading_rate_deg : YawRateValue_unavailable; // UNAVAILABLE VALUES FOR TESTING basic_container.referencePosition.altitude.altitudeConfidence = AltitudeConfidence_unavailable; // ------------------------------ bvc.heading.headingConfidence = HeadingConfidence_unavailable; bvc.speed.speedConfidence = SpeedConfidence_unavailable; bvc.vehicleLength.vehicleLengthConfidenceIndication = VehicleLengthConfidenceIndication_unavailable; bvc.longitudinalAcceleration.longitudinalAccelerationConfidence = AccelerationConfidence_unavailable; bvc.curvature.curvatureConfidence = CurvatureConfidence_unavailable; bvc.yawRate.yawRateConfidence = YawRateConfidence_unavailable; // ------------------------------ RCLCPP_INFO(node_->get_logger(), "[CamApplication::send] Sending CAM"); std::unique_ptr payload{new geonet::DownPacket()}; payload->layer(OsiLayer::Application) = std::move(message); Application::DataRequest request; request.its_aid = aid::CP; request.transport_type = geonet::TransportType::SHB; request.communication_profile = geonet::CommunicationProfile::ITS_G5; Application::DataConfirm confirm = Application::request(request, std::move(payload), node_); if (!confirm.accepted()) { throw std::runtime_error("[CamApplication::send] CAM application data request failed"); } sending_ = false; std::chrono::milliseconds ms = std::chrono::duration_cast ( std::chrono::system_clock::now().time_since_epoch() ); node_->latency_log_file << "T_depart," << cam_num_ << "," << ms.count() << std::endl; ++cam_num_; } }