#include "autoware_v2x/cpm_application.hpp" #include "autoware_v2x/positioning.hpp" #include "autoware_v2x/security.hpp" #include "autoware_v2x/link_layer.hpp" #include "autoware_v2x/v2x_node.hpp" #include "tf2/LinearMath/Quaternion.h" #include "tf2/LinearMath/Matrix3x3.h" #include "rclcpp/rclcpp.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include using namespace vanetza; using namespace std::chrono; namespace v2x { CpmApplication::CpmApplication(V2XNode *node, Runtime &rt, bool is_sender) : node_(node), runtime_(rt), ego_(), generationTime_(0), updating_objects_list_(false), sending_(false), is_sender_(is_sender), reflect_packet_(false), objectConfidenceThreshold_(0.0), include_all_persons_and_animals_(false), cpm_num_(0), received_cpm_num_(0), cpm_object_id_(0), use_dynamic_generation_rules_(false) { RCLCPP_INFO(node_->get_logger(), "CpmApplication started. is_sender: %d", is_sender_); set_interval(milliseconds(100)); createTables(); } void CpmApplication::set_interval(Clock::duration interval) { cpm_interval_ = interval; runtime_.cancel(this); schedule_timer(); } void CpmApplication::schedule_timer() { runtime_.schedule(cpm_interval_, std::bind(&CpmApplication::on_timer, this, std::placeholders::_1), this); } void CpmApplication::on_timer(Clock::time_point) { schedule_timer(); send(); } CpmApplication::PortType CpmApplication::port() { return btp::ports::CPM; } std::string CpmApplication::uuidToHexString(const unique_identifier_msgs::msg::UUID &id) { std::stringstream ss; for (auto i = 0; i < 16; ++i) { ss << std::hex << std::setfill('0') << std::setw(2) << +id.uuid[i]; } return ss.str(); } void CpmApplication::indicate(const DataIndication &indication, UpPacketPtr packet) { asn1::PacketVisitor visitor; std::shared_ptr cpm = boost::apply_visitor(visitor, *packet); if (cpm) { RCLCPP_INFO(node_->get_logger(), "[INDICATE] Received CPM #%d", received_cpm_num_); rclcpp::Time current_time = node_->now(); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] T_receive_r1 %ld", current_time.nanoseconds()); asn1::Cpm message = *cpm; ItsPduHeader_t &header = message->header; std::chrono::milliseconds ms = std::chrono::duration_cast ( std::chrono::system_clock::now().time_since_epoch() ); node_->latency_log_file << "T_received," << header.stationID << "," << ms.count() << std::endl; // Calculate GDT and get GDT from CPM and calculate the "Age of CPM" TimestampIts_t gt_cpm; asn_long2INTEGER(>_cpm, (long) message->cpm.generationDeltaTime); // const auto time_now = duration_cast (runtime_.now().time_since_epoch()); // uint16_t gdt = time_now.count(); // int gdt_diff = (65536 + (gdt - gdt_cpm) % 65536) % 65536; // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] GDT_CPM: %ld", gdt_cpm); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] GDT: %u", gdt); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] [measure] T_R1R2: %d", gdt_diff); CpmManagementContainer_t &management = message->cpm.cpmParameters.managementContainer; double lat = management.referencePosition.latitude / 1.0e7; double lon = management.referencePosition.longitude / 1.0e7; int zone; int grid_num_x = 4; int grid_num_y = 39; int grid_size = 100000; bool northp; double x, y; GeographicLib::UTMUPS::Forward(lat, lon, zone, northp, x, y); double x_mgrs = x - grid_num_x * grid_size; double y_mgrs = y - grid_num_y * grid_size; OriginatingVehicleContainer_t &ovc = message->cpm.cpmParameters.stationDataContainer->choice.originatingVehicleContainer; // Calculate ego-vehicle orientation (radians) from heading (degree). // orientation: True-East, counter-clockwise angle. (0.1 degree accuracy) int heading = ovc.heading.headingValue; double orientation = (90.0 - (double) heading / 10.0) * M_PI / 180.0; if (orientation < 0.0) orientation += (2.0 * M_PI); // double orientation = heading / 10.0; // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] heading: %d", heading); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] orientation: %f", orientation); // Publish CPM Sender info to /v2x/cpm/sender through V2XNode function node_->publishCpmSenderObject(x_mgrs, y_mgrs, orientation); // Get PerceivedObjects receivedObjectsStack.clear(); PerceivedObjectContainer_t *&poc = message->cpm.cpmParameters.perceivedObjectContainer; if (poc != NULL) { for (int i = 0; i < poc->list.count; ++i) { // RCLCPP_INFO(node_->get_logger(), "[INDICATE] Object: #%d", poc->list.array[i]->objectID); CpmApplication::Object object; double x1 = poc->list.array[i]->xDistance.value; double y1 = poc->list.array[i]->yDistance.value; x1 = x1 / 100.0; y1 = y1 / 100.0; object.position_x = x_mgrs + (cos(orientation) * x1 - sin(orientation) * y1); object.position_y = y_mgrs + (sin(orientation) * x1 + cos(orientation) * y1); object.shape_x = poc->list.array[i]->planarObjectDimension2->value; object.shape_y = poc->list.array[i]->planarObjectDimension1->value; object.shape_z = poc->list.array[i]->verticalObjectDimension->value; object.yawAngle = poc->list.array[i]->yawAngle->value; double yaw_radian = (M_PI * object.yawAngle / 10.0) / 180.0; tf2::Quaternion quat; quat.setRPY(0, 0, yaw_radian); object.orientation_x = quat.x(); object.orientation_y = quat.y(); object.orientation_z = quat.z(); object.orientation_w = quat.w(); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::indicate] object.quat: %f, %f, %f, %f", object.orientation_x, object.orientation_y, object.orientation_z, object.orientation_w); receivedObjectsStack.push_back(object); } node_->publishObjects(&receivedObjectsStack, header.stationID); } else { // RCLCPP_INFO(node_->get_logger(), "[INDICATE] Empty POC"); } insertCpmToCpmTable(message, (char*) "cpm_received"); if (reflect_packet_) { Application::DownPacketPtr packet{new DownPacket()}; std::unique_ptr payload{new geonet::DownPacket()}; payload->layer(OsiLayer::Application) = std::move(message); Application::DataRequest request; request.its_aid = aid::CP; request.transport_type = geonet::TransportType::SHB; request.communication_profile = geonet::CommunicationProfile::ITS_G5; Application::DataConfirm confirm = Application::request(request, std::move(payload), node_); if (!confirm.accepted()) { throw std::runtime_error("[CpmApplication::indicate] Packet reflection failed"); } } ++received_cpm_num_; } else { RCLCPP_INFO(node_->get_logger(), "[INDICATE] Received broken content"); } } void CpmApplication::updateMGRS(double *x, double *y) { ego_.mgrs_x = *x; ego_.mgrs_y = *y; // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::updateMGRS] ego-vehicle.position: %.10f, %.10f", ego_.mgrs_x, ego_.mgrs_y); } void CpmApplication::updateRP(double *lat, double *lon, double *altitude) { ego_.latitude = *lat; ego_.longitude = *lon; ego_.altitude = *altitude; } void CpmApplication::updateGenerationTime(int *gdt, long *gdt_timestamp) { generationTime_ = *gdt; gdt_timestamp_ = *gdt_timestamp; // ETSI-epoch milliseconds timestamp } void CpmApplication::updateHeading(double *yaw) { ego_.heading = *yaw; } void CpmApplication::setAllObjectsOfPersonsAnimalsToSend(const autoware_auto_perception_msgs::msg::PredictedObjects::ConstSharedPtr msg) { if (msg->objects.size() > 0) { for (autoware_auto_perception_msgs::msg::PredictedObject obj : msg->objects) { std::string object_uuid = uuidToHexString(obj.object_id); auto found_object = std::find_if(objectsList.begin(), objectsList.end(), [&](auto const &e) { return !strcmp(e.uuid.c_str(), object_uuid.c_str()); }); if (found_object == objectsList.end()) { } else { found_object->to_send = true; } } } } void CpmApplication::updateObjectsList(const autoware_auto_perception_msgs::msg::PredictedObjects::ConstSharedPtr msg) { updating_objects_list_ = true; // Flag all objects as NOT_SEND if (objectsList.size() > 0) { for (auto& object : objectsList) { object.to_send = false; object.to_send_trigger = -1; } } if (msg->objects.size() > 0) { for (autoware_auto_perception_msgs::msg::PredictedObject obj : msg->objects) { // RCLCPP_INFO(node_->get_logger(), "%d", obj.classification.front().label); double existence_probability = obj.existence_probability; // RCLCPP_INFO(node_->get_logger(), "existence_probability: %f", existence_probability); std::string object_uuid = uuidToHexString(obj.object_id); // RCLCPP_INFO(node_->get_logger(), "received object_id: %s", object_uuid.c_str()); // RCLCPP_INFO(node_->get_logger(), "ObjectsList count: %d", objectsList.size()); if (existence_probability >= objectConfidenceThreshold_) { // ObjectConfidence > ObjectConfidenceThreshold // Object tracked in internal memory? (i.e. Is object included in ObjectsList?) auto found_object = std::find_if(objectsList.begin(), objectsList.end(), [&](auto const &e) { return !strcmp(e.uuid.c_str(), object_uuid.c_str()); }); if (found_object == objectsList.end()) { // Object is new to internal memory if (cpm_object_id_ > 255) { cpm_object_id_ = 0; } // Add new object to ObjectsList CpmApplication::Object object; object.objectID = cpm_object_id_; object.uuid = object_uuid; object.timestamp_ros = msg->header.stamp; object.position_x = obj.kinematics.initial_pose_with_covariance.pose.position.x; object.position_y = obj.kinematics.initial_pose_with_covariance.pose.position.y; object.position_z = obj.kinematics.initial_pose_with_covariance.pose.position.z; object.orientation_x = obj.kinematics.initial_pose_with_covariance.pose.orientation.x; object.orientation_y = obj.kinematics.initial_pose_with_covariance.pose.orientation.y; object.orientation_z = obj.kinematics.initial_pose_with_covariance.pose.orientation.z; object.orientation_w = obj.kinematics.initial_pose_with_covariance.pose.orientation.w; object.shape_x = std::lround(obj.shape.dimensions.x * 10.0); object.shape_y = std::lround(obj.shape.dimensions.y * 10.0); object.shape_z = std::lround(obj.shape.dimensions.z * 10.0); long long msg_timestamp_sec = msg->header.stamp.sec; long long msg_timestamp_nsec = msg->header.stamp.nanosec; msg_timestamp_sec -= 1072915200; // convert to etsi-epoch long long msg_timestamp_msec = msg_timestamp_sec * 1000 + msg_timestamp_nsec / 1000000; object.timeOfMeasurement = gdt_timestamp_ - msg_timestamp_msec; if (object.timeOfMeasurement < -1500 || object.timeOfMeasurement > 1500) { RCLCPP_INFO(node_->get_logger(), "[updateObjectsStack] timeOfMeasurement out of bounds: %d", object.timeOfMeasurement); continue; } object.to_send = true; object.to_send_trigger = 0; object.timestamp = runtime_.now(); objectsList.push_back(object); ++cpm_object_id_; } else { // Object was already in internal memory // Object belongs to class person or animal if (obj.classification.front().label == autoware_auto_perception_msgs::msg::ObjectClassification::PEDESTRIAN || obj.classification.front().label == autoware_auto_perception_msgs::msg::ObjectClassification::UNKNOWN) { if (include_all_persons_and_animals_) { found_object->to_send = true; found_object->to_send_trigger = 5; } // Object has not been included in a CPM in the past 500 ms. if (runtime_.now().time_since_epoch().count() - found_object->timestamp.time_since_epoch().count() > 500000) { // Include all objects of class person or animal in the current CPM include_all_persons_and_animals_ = true; found_object->to_send = true; found_object->to_send_trigger = 5; setAllObjectsOfPersonsAnimalsToSend(msg); RCLCPP_INFO(node_->get_logger(), "Include all objects of person/animal class"); } } else { // Object does not belong to class person or animal // Euclidean absolute distance has changed by more than 4m double dist = pow(obj.kinematics.initial_pose_with_covariance.pose.position.x - found_object->position_x, 2) + pow(obj.kinematics.initial_pose_with_covariance.pose.position.y - found_object->position_y, 2); dist = sqrt(dist); // RCLCPP_INFO(node_->get_logger(), "Distance changed: %f", dist); if (dist > 4) { found_object->to_send = true; found_object->to_send_trigger = 1; } else { } // Absolute speed changed by more than 0.5 m/s double speed = pow(obj.kinematics.initial_twist_with_covariance.twist.linear.x - found_object->twist_linear_x, 2) + pow(obj.kinematics.initial_twist_with_covariance.twist.linear.x- found_object->twist_linear_y, 2); speed = sqrt(speed); // RCLCPP_INFO(node_->get_logger(), "Speed changed: %f", dist); if (speed > 0.5) { found_object->to_send = true; found_object->to_send_trigger = 2; } // Orientation of speed vector changed by more than 4 degrees double twist_angular_x_diff = (obj.kinematics.initial_twist_with_covariance.twist.angular.x - found_object->twist_angular_x) * 180 / M_PI; double twist_angular_y_diff = (obj.kinematics.initial_twist_with_covariance.twist.angular.y - found_object->twist_angular_y) * 180 / M_PI; // RCLCPP_INFO(node_->get_logger(), "Orientation speed vector changed x: %f", twist_angular_x_diff); // RCLCPP_INFO(node_->get_logger(), "Orientation speed vector changed y: %f", twist_angular_y_diff); if( twist_angular_x_diff > 4 || twist_angular_y_diff > 4 ) { found_object->to_send = true; found_object->to_send_trigger = 3; } // It has been more than 1 s since last transmission of this object if (runtime_.now().time_since_epoch().count() - found_object->timestamp.time_since_epoch().count() > 1000000) { found_object->to_send = true; found_object->to_send_trigger = 4; // RCLCPP_INFO(node_->get_logger(), "Been more than 1s: %ld", runtime_.now().time_since_epoch().count() - found_object->timestamp.time_since_epoch().count()); } } // Update found_object found_object->timestamp_ros = msg->header.stamp; found_object->position_x = obj.kinematics.initial_pose_with_covariance.pose.position.x; found_object->position_y = obj.kinematics.initial_pose_with_covariance.pose.position.y; found_object->position_z = obj.kinematics.initial_pose_with_covariance.pose.position.z; found_object->orientation_x = obj.kinematics.initial_pose_with_covariance.pose.orientation.x; found_object->orientation_y = obj.kinematics.initial_pose_with_covariance.pose.orientation.y; found_object->orientation_z = obj.kinematics.initial_pose_with_covariance.pose.orientation.z; found_object->orientation_w = obj.kinematics.initial_pose_with_covariance.pose.orientation.w; found_object->shape_x = std::lround(obj.shape.dimensions.x * 10.0); found_object->shape_y = std::lround(obj.shape.dimensions.y * 10.0); found_object->shape_z = std::lround(obj.shape.dimensions.z * 10.0); long long msg_timestamp_sec = msg->header.stamp.sec; long long msg_timestamp_nsec = msg->header.stamp.nanosec; msg_timestamp_sec -= 1072915200; // convert to etsi-epoch long long msg_timestamp_msec = msg_timestamp_sec * 1000 + msg_timestamp_nsec / 1000000; found_object->timeOfMeasurement = gdt_timestamp_ - msg_timestamp_msec; if (found_object->timeOfMeasurement < -1500 || found_object->timeOfMeasurement > 1500) { RCLCPP_INFO(node_->get_logger(), "[updateObjectsStack] timeOfMeasurement out of bounds: %d", found_object->timeOfMeasurement); continue; } found_object->timestamp = runtime_.now(); // if use_dymanic_generation_rules_ == false, then always include object in CPM if (!use_dynamic_generation_rules_) { found_object->to_send = true; found_object->to_send_trigger = 0; } } } } } else { // No objects detected } // RCLCPP_INFO(node_->get_logger(), "ObjectsStack: %d objects", objectsStack.size()); rclcpp::Time current_time = node_->now(); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::updateObjectsStack] [measure] T_objstack_updated %ld", current_time.nanoseconds()); updating_objects_list_ = false; } void CpmApplication::printObjectsList(int cpm_num) { // RCLCPP_INFO(node_->get_logger(), "------------------------"); if (objectsList.size() > 0) { for (auto& object : objectsList) { RCLCPP_INFO(node_->get_logger(), "[objectsList] %d,%d,%s,%d,%d", cpm_num, object.objectID, object.uuid.c_str(), object.to_send, object.to_send_trigger); } } else { RCLCPP_INFO(node_->get_logger(), "[objectsList] %d,,,,", cpm_num); } // RCLCPP_INFO(node_->get_logger(), "------------------------"); } void CpmApplication::send() { if (is_sender_) { sending_ = true; printObjectsList(cpm_num_); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] Sending CPM..."); std::chrono::milliseconds now_ms = std::chrono::duration_cast(std::chrono::system_clock::now().time_since_epoch()); vanetza::asn1::Cpm message; // ITS PDU Header ItsPduHeader_t &header = message->header; header.protocolVersion = 1; header.messageID = 14; header.stationID = cpm_num_; CollectivePerceptionMessage_t &cpm = message->cpm; // Set GenerationTime RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] %ld", gdt_timestamp_); cpm.generationDeltaTime = (now_ms.count() - 1072915200000) % 65536; CpmManagementContainer_t &management = cpm.cpmParameters.managementContainer; management.stationType = StationType_passengerCar; management.referencePosition.latitude = ego_.latitude * 1e7; management.referencePosition.longitude = ego_.longitude * 1e7; StationDataContainer_t *&sdc = cpm.cpmParameters.stationDataContainer; sdc = vanetza::asn1::allocate(); sdc->present = StationDataContainer_PR_originatingVehicleContainer; OriginatingVehicleContainer_t &ovc = sdc->choice.originatingVehicleContainer; ovc.speed.speedValue = 0; ovc.speed.speedConfidence = 1; // Calculate headingValue of ego-vehicle. // Convert ego-vehicle yaw to True-North clockwise angle (heading). 0.1 degree accuracy. int heading = std::lround(((-ego_.heading * 180.0 / M_PI) + 90.0) * 10.0); if (heading < 0) heading += 3600; ovc.heading.headingValue = heading; ovc.heading.headingConfidence = 1; int perceivedObjectsCount = 0; if (objectsList.size() > 0) { PerceivedObjectContainer_t *&poc = cpm.cpmParameters.perceivedObjectContainer; poc = vanetza::asn1::allocate(); for (auto& object : objectsList) { // RCLCPP_INFO(node_->get_logger(), "object.to_send: %d", object.to_send); if (object.to_send) { PerceivedObject *pObj = vanetza::asn1::allocate(); // Update CPM-specific values for Object object.xDistance = std::lround(( (object.position_x - ego_.mgrs_x) * cos(-ego_.heading) - (object.position_y - ego_.mgrs_y) * sin(-ego_.heading) ) * 100.0); object.yDistance = std::lround(( (object.position_x - ego_.mgrs_x) * sin(-ego_.heading) + (object.position_y - ego_.mgrs_y) * cos(-ego_.heading) ) * 100.0); if (object.xDistance < -132768 || object.xDistance > 132767) { RCLCPP_WARN(node_->get_logger(), "xDistance out of bounds. objectID: #%d", object.objectID); continue; } if (object.yDistance < -132768 || object.yDistance > 132767) { RCLCPP_WARN(node_->get_logger(), "yDistance out of bounds. objectID: #%d", object.objectID); continue; } // Calculate orientation of detected object tf2::Quaternion quat(object.orientation_x, object.orientation_y, object.orientation_z, object.orientation_w); tf2::Matrix3x3 matrix(quat); double roll, pitch, yaw; matrix.getRPY(roll, pitch, yaw); if (yaw < 0) { object.yawAngle = std::lround(((yaw + 2*M_PI) * 180.0 / M_PI) * 10.0); // 0 - 3600 } else { object.yawAngle = std::lround((yaw * 180.0 / M_PI) * 10.0); // 0 - 3600 } object.xSpeed = 0; object.ySpeed = 0; pObj->objectID = object.objectID; pObj->timeOfMeasurement = object.timeOfMeasurement; pObj->xDistance.value = object.xDistance; pObj->xDistance.confidence = 1; pObj->yDistance.value = object.yDistance; pObj->yDistance.confidence = 1; pObj->xSpeed.value = object.xSpeed; pObj->xSpeed.confidence = 1; pObj->ySpeed.value = object.ySpeed; pObj->ySpeed.confidence = 1; pObj->planarObjectDimension1 = vanetza::asn1::allocate(); pObj->planarObjectDimension2 = vanetza::asn1::allocate(); pObj->verticalObjectDimension = vanetza::asn1::allocate(); (*(pObj->planarObjectDimension1)).value = object.shape_y; (*(pObj->planarObjectDimension1)).confidence = 1; (*(pObj->planarObjectDimension2)).value = object.shape_x; (*(pObj->planarObjectDimension2)).confidence = 1; (*(pObj->verticalObjectDimension)).value = object.shape_z; (*(pObj->verticalObjectDimension)).confidence = 1; pObj->yawAngle = vanetza::asn1::allocate(); (*(pObj->yawAngle)).value = object.yawAngle; (*(pObj->yawAngle)).confidence = 1; ASN_SEQUENCE_ADD(poc, pObj); // object.to_send = false; // object.to_send_trigger = -1; // RCLCPP_INFO(node_->get_logger(), "Sending object: %s", object.uuid.c_str()); ++perceivedObjectsCount; } else { // Object.to_send is set to False // RCLCPP_INFO(node_->get_logger(), "Object: %s not being sent.", object.uuid.c_str()); } } cpm.cpmParameters.numberOfPerceivedObjects = perceivedObjectsCount; if (perceivedObjectsCount == 0) { cpm.cpmParameters.perceivedObjectContainer = NULL; } } else { cpm.cpmParameters.perceivedObjectContainer = NULL; RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] Empty POC"); } RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] Sending CPM with %d objects", perceivedObjectsCount); insertCpmToCpmTable(message, (char*) "cpm_sent"); std::unique_ptr payload{new geonet::DownPacket()}; payload->layer(OsiLayer::Application) = std::move(message); Application::DataRequest request; request.its_aid = aid::CP; request.transport_type = geonet::TransportType::SHB; request.communication_profile = geonet::CommunicationProfile::ITS_G5; Application::DataConfirm confirm = Application::request(request, std::move(payload), node_); if (!confirm.accepted()) { throw std::runtime_error("[CpmApplication::send] CPM application data request failed"); } sending_ = false; // rclcpp::Time current_time = node_->now(); // RCLCPP_INFO(node_->get_logger(), "[CpmApplication::send] [measure] T_depart_r1 %ld", current_time.nanoseconds()); std::chrono::milliseconds ms = std::chrono::duration_cast ( std::chrono::system_clock::now().time_since_epoch() ); node_->latency_log_file << "T_depart," << cpm_num_ << "," << ms.count() << std::endl; ++cpm_num_; } } void CpmApplication::createTables() { sqlite3 *db = NULL; char* err = NULL; int ret = sqlite3_open("autoware_v2x.db", &db); if (ret != SQLITE_OK) { RCLCPP_INFO(node_->get_logger(), "DB File Open Error"); return; } char* sql_command; sql_command = (char*) "create table if not exists cpm_sent(id INTEGER PRIMARY KEY, timestamp BIGINT, perceivedObjectCount INTEGER);"; ret = sqlite3_exec(db, sql_command, NULL, NULL, &err); if (ret != SQLITE_OK) { RCLCPP_INFO(node_->get_logger(), "DB Execution Error (create table cpm_sent)"); sqlite3_close(db); sqlite3_free(err); return; } sql_command = (char*) "create table if not exists cpm_received(id INTEGER PRIMARY KEY, timestamp BIGINT, perceivedObjectCount INTEGER);"; ret = sqlite3_exec(db, sql_command, NULL, NULL, &err); if (ret != SQLITE_OK) { RCLCPP_INFO(node_->get_logger(), "DB Execution Error (create table cpm_received)"); sqlite3_close(db); sqlite3_free(err); return; } sqlite3_close(db); RCLCPP_INFO(node_->get_logger(), "CpmApplication::createTables Finished"); } void CpmApplication::insertCpmToCpmTable(vanetza::asn1::Cpm cpm, char* table_name) { sqlite3 *db = NULL; char* err = NULL; int ret = sqlite3_open("autoware_v2x.db", &db); if (ret != SQLITE_OK) { RCLCPP_INFO(node_->get_logger(), "DB File Open Error"); return; } int64_t timestamp = std::chrono::duration_cast(std::chrono::system_clock::now().time_since_epoch()).count(); int perceivedObjectCount = 0; if (cpm->cpm.cpmParameters.numberOfPerceivedObjects) { perceivedObjectCount = cpm->cpm.cpmParameters.numberOfPerceivedObjects; } std::stringstream sql_command; sql_command << "insert into " << table_name << " (timestamp, perceivedObjectCount) values (" << timestamp << ", " << perceivedObjectCount << ");"; ret = sqlite3_exec(db, sql_command.str().c_str(), NULL, NULL, &err); if (ret != SQLITE_OK) { RCLCPP_INFO(node_->get_logger(), "DB Execution Error (insertCpmToCpmTable)"); RCLCPP_INFO(node_->get_logger(), sql_command.str().c_str()); RCLCPP_INFO(node_->get_logger(), err); sqlite3_close(db); sqlite3_free(err); return; } sqlite3_close(db); // RCLCPP_INFO(node_->get_logger(), "CpmApplication::insertCpmToCpmTable Finished"); } }